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Abstract

Parsing is the task of assigning syntactic or semantic structure to a natural language

sentence. This thesis focuses on syntactic parsing with Combinatory Categorial Gram-

mar (CCG; Steedman 2000). CCG allows incremental processing, which is essential

for speech recognition and some machine translation models, and it can build semantic

structure in tandem with syntactic parsing. Supertagging solves a subset of the parsing

task by assigning lexical types to words in a sentence using a sequence model. It has

emerged as a way to improve the efficiency of full CCG parsing (Clark and Curran,

2007) by reducing the parser’s search space. This has been very successful and it is the

central theme of this thesis.

We begin by an analysis of how efficiency is being traded for accuracy in supertag-

ging. Pruning the search space by supertagging is inherently approximate and to con-

trast this we include A* in our analysis, a classic exact search technique. Interestingly,

we find that combining the two methods improves efficiency but we also demonstrate

that excessive pruning by a supertagger significantly lowers the upper bound on accu-

racy of a CCG parser.

Inspired by this analysis, we design a single integrated model with both supertag-

ging and parsing features, rather than separating them into distinct models chained

together in a pipeline. To overcome the resulting complexity, we experiment with both

loopy belief propagation and dual decomposition approaches to inference, the first em-

pirical comparison of these algorithms that we are aware of on a structured natural

language processing problem.

Finally, we address training the integrated model. We adopt the idea of optimis-

ing directly for a task-specific metric such as is common in other areas like statistical

machine translation. We demonstrate how a novel dynamic programming algorithm

enables us to optimise for F-measure, our task-specific evaluation metric, and experi-

ment with approximations, which prove to be excellent substitutions.

Each of the presented methods improves over the state-of-the-art in CCG pars-

ing. Moreover, the improvements are additive, achieving a labelled/unlabelled depen-

dency F-measure on CCGbank of 89.3%/94.0% with gold part-of-speech tags, and

87.2%/92.8% with automatic part-of-speech tags, the best reported results for this task

to date. Our techniques are general and we expect them to apply to other parsing prob-

lems, including lexicalised tree adjoining grammar and context-free grammar parsing.
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Chapter 1

Introduction

Parsing is the task of assigning syntactic structure to a sentence.1 The inherent ambi-

guity in language makes this very challenging since there is a vast number of possible

analyses for even the most simple sentences (Figure 1.1). Parsing is much studied in

natural language processing and there is a high demand for both accurate and efficient

parsers whose predictions can serve as input to downstream applications such as ma-

chine translation (Galley et al., 2004, 2006) or speech recognition (Chelba and Jelinek,

1998).

In this thesis we focus on Combinatory Categorial Grammar (CCG; Steedman

2000). CCG has many properties that make it attractive for downstream applications,

including a fine-grained non-terminal set that has been successfully used within sta-

tistical machine translation models (Birch et al., 2007; Hassan et al., 2007) as well

1Parsing may also assign semantic structure but this thesis focuses on the syntactic component.

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5    

NP0,2,0,1

S\NP3,5,1,2

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

Figure 1.1: Representation of two possible syntactic structures, amongst many, for the

sentence time flies like an arrow, the first is in solid and the second in a dashed line.
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2 Chapter 1. Introduction

Time flies like an arrow

NP S\NP ((S\NP)\(S\NP))/NP NP/NP NP

(a) Supertagging

Time flies like an arrow
NP NPS\NP (S\NP)/NP NP/NP

!
NP

>

S\NP
>

(b) Parsing

Figure 1.2: Illustration of supertagging (a) and a parse failure with wrong supertags (b).

as a natural representation of non-constituents which frequently occur in translation,

e.g., CCG can assign syntactic or semantic structure to a phrase like Peter is. The

latter property motivated the proposal of an actual parsing-based CCG model for ma-

chine translation (Auli, 2009). CCG is also suitable for incremental processing of

language from left to right and has been used in this way for dialogue systems (Kruijff

et al., 2007). Further applications include building semantic interpretations (Bos et al.,

2004), language generation (White and Baldridge, 2003) and semantic parsing (Zettle-

moyer and Collins, 2007; Kwiatkowski et al., 2010, 2011). Despite our focus on CCG

and syntactic parsing, we would like to stress that the algorithms and models presented

in this thesis are equally applicable to other grammar formalisms as well as semantic

parsing.

The central theme of this thesis is the common use of a tagger with a parser. Tag-

ging is the task of assigning lexical types, such as Parts-of-Speech, to each word in

a sentence using a simple sequence model. Lexicalised formalisms usually rely on a

much larger set of lexical types, or supertags, than standard context-free Penn Tree-

bank grammars. Tagging with supertags is known as supertagging (Bangalore and

Joshi, 1999), illustrated in Figure 1.2(a). It differs from full parsing in that overall

grammaticality cannot be guaranteed (Figure 1.2(b)2) which in turn allows the use of

much simpler and more efficient models. The dominant use of supertagging is to prune

the set of lexical types considered by a parser. This approach chains supertagging and

parsing in a pipeline in which the decisions of the supertagger directly influence the

2The parser we use in this thesis would actually be able to find an analysis for this sentence due to its
use of type-changing rules (§3.3.3) which do not correspond to formal CCG combinatory rules (§2.1.2).
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parser. The technique has been widely successful and drives the broad-coverage C&C

parser (Clark and Curran, 2007). Although very effective, this technique is inherently

approximate since it removes part of the parser’s search space.

The first question we address in this thesis is how supertagging affects end-to-end

parsing performance both in terms of efficiency and accuracy. Since supertagging

is approximate, we compare and contrast it against exact search with A*, a classic

heuristic search algorithm.

Although efficient, the pipeline approach does not allow the parser to recover from

errors made by the tagger, nor does the parser use the probabilities estimated by the su-

pertagger. Disregarding these probabilities is wasteful because the parser usually has a

poorer model for lexical types. We address these problems by introducing a single inte-

grated model of parsing and supertagging which does not suffer from these shortcom-

ings. This integrated model is substantially more complex than the original pipeline

approach and we need to be able to efficiently compute expectations for training and

maximum probability solutions for parsing. We solve this by dual decomposition and

loopy belief propagation approaches to inference during parsing and piecewise estima-

tion during training. For our model, the inference approaches are based on extensions

and generalisations of classical algorithms from the natural language processing liter-

ature.

The next problem we address is training the integrated model in order to further

improve accuracy. We adopt the idea of optimising directly for a task-specific met-

ric such as is common in statistical machine translation (Och, 2003). In our setting

this reduces to augmenting the model expectations by a loss function representing the

task-specific metric. For this purpose we introduce a novel dynamic programming

algorithm that allows us to directly optimise sentence-level F-measure. Using these

methods we achieve the best published performance to date on CCGbank, a CCG ver-

sion of the Penn Treebank.

1.1 Outline of the Dissertation

Chapter 2 introduces relevant background to this thesis. We give an introduction to

the CCG formalism and an overview of supertagging, focusing on the baseline against

which we compare the integrated model. Next, we discuss probabilistic models and

algorithms for training and decoding parsing and supertagging models. These algo-

rithms are special cases of a general algorithm known as belief propagation. Finally,
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we explain previously proposed models for CCG parsing and supertagging in terms of

the algorithms discussed earlier.

Chapter 3 describes the experimental setup we use throughout the thesis. We dis-

cuss the parsing task, the evaluation methods, the baseline parsing and supertagging

models as well as their configuration and estimation. This includes the previous state-

of-the-art CCG parsing model of Clark and Curran (2007) which is the baseline for our

integrated model.

Chapter 4 is about efficient search for CCG parsing. We present a thorough analy-

sis of our baseline approach, the combination of supertagging and parsing in a pipeline,

an approximate search technique. We compare and contrast this with A*, an efficient

heuristic exact search algorithm. Finally, we combine A* and supertagging to effec-

tively improve inexact search with an exact search technique.

In Chapter 5 we introduce an integrated model of both parsing and supertagging.

We motivate the use of this model via an oracle experiment, showing that the upper

bound on accuracy of a CCG parser is significantly lowered when its search space is

pruned by a supertagger. The resulting increase in complexity is tackled with loopy

belief propagation and dual decomposition approaches to inference.

In Chapter 6 we improve the integrated model by optimising each sub-model for

a separate task-specific metric using the softmax-margin objective. We present novel

dynamic programs to optimise towards F-measure in an exact fashion. We compare

this to more efficient approximate methods to measure the reliability of these methods.

Finally, in Chapter 7 we conclude and present avenues for future work.

1.2 Research Contributions

This dissertation makes the following important research contributions.

• We describe a set of innovations which result in the most accurate CCG parser in

the literature to date, raising parsing accuracy on CCGbank from 87.7% to 89.3%

labelled F-measure with gold part-of-speech tags. Moreover, we introduce a new

and principled approach to supertagging and parsing.

• We demonstrate that the interaction between a parser and a supertagger can be

better exploited in an integrated model rather than simply using the supertagger

to prune the parser’s search space.
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• We present the first empirical comparison of dual decomposition and loopy be-

lief propagation on a structured prediction task. We find that the accuracy of

both inference methods is nearly indistinguishable. Furthermore, we show that

for our model the vast majority of initial solutions recovered by belief propaga-

tion is exact, despite a lack of formal guarantees. Recovering the same number

of exact solutions takes many iterations for dual decomposition.

• We show that supertagging, while increasing efficiency, significantly lowers the

upper bound on parsing accuracy.

• We present a novel dynamic programming algorithm to compute exact loss func-

tions corresponding to labelled F-measure. We also experiment with approxima-

tions of sentence-level F-measure and find that they are excellent substitutes for

exact loss functions, despite being computationally much less demanding. In

fact, they are as easy to use as standard conditional log-likelihood while sub-

stantially improving accuracy.

• We demonstrate the viability of A* as a search algorithm for parsing with ex-

pressive grammar formalisms such as CCG, and what we believe to be the first

evaluation of A* parsing on the stringent metric of CPU time.





Chapter 2

Background

This chapter covers the relevant background on which we will build in the rest of this

thesis.

We begin by introducing Combinatory Categorial Grammar (CCG), the formalism

we use throughout the thesis. We will discuss the two main building blocks of a CCG

grammar, namely the lexicon and combinatory rules with which derivations can be

formed, that is syntactic analyses for a sentence. CCG recovers semantically informed

dependencies between predicates and arguments. For example, in I like to run, there is

a dependency between I and run, whereas a standard dependency grammar would not

assign such a dependency (§2.1).

Next, we discuss supertagging which is typically cast as a sequence modelling

problem over lexical types for words, also referred to as supertags. A supertagged

sentence vastly reduces the ambiguity a parser has to resolve, but it does not create the

dependency links that parsing does. The predominant use of supertaggers is to prune

the search space of a parser to improve efficiency. This is the basis for the state-of-

the-art CCG parsing model (Clark and Curran, 2007), the baseline for our integrated

supertagging and parsing model (§2.2).

Parsing and supertagging are usually modelled probabilistically by either genera-

tive or discriminative models. We focus on the discriminative approach and describe

how the model parameters can be learned from data samples using expectations, that

is the expected number of times a model believes an event should occur, compared

to how often it actually does occur in the training sample. Once we have found the

parameters, we can use the model for decoding, the task of predicting the best output

given an input. Models for parsing and tagging differ in their structure and therefore

different, specialised algorithms have been introduced. These algorithms can be used

7



8 Chapter 2. Background

to compute maximum probability solutions for decoding or expectations for training.

For parsing we use the inside and outside algorithms and for tagging the forward and

backward algorithms. We will show that they are all special cases of the general be-

lief propagation algorithm which can be used to compute expectations and maximum

solutions on general model structures (§2.3).

2.1 Combinatory Categorial Grammar

In the introduction (Chapter 1) we have briefly motivated the use of Combinatory Cat-

egorial Grammar (CCG; Steedman 2000) for machine translation and speech recog-

nition. However, CCG has a range of other advantages such as the ability to recover

semantically motivated dependencies, so called predicate-argument relations. CCG is

particularly well suited to recover long-distance relationships between words. These

dependencies are usually not recovered by standard treebank parsers such as those pre-

sented by Charniak (2000) and Collins (2003) which require dedicated post-processing

steps for this purpose.

Furthermore, CCG is particularly interesting for semantic parsing (Bos et al., 2004;

Bos, 2005; Zettlemoyer and Collins, 2007; Kwiatkowski et al., 2010, 2011) since the

formalism provides a transparent interface between syntax and semantics, which al-

lows semantic structure to be built in tandem with syntactic structure, providing a

so-called compositional semantics. Steedman (2000) covers this topic in depth and we

will not deal with it in this thesis since our focus is on syntactic parsing. However, all

the algorithms we present still apply in this setting.

2.1.1 Categories and the Lexicon

The lexicon specifies for each word lexical categories which are either atomic or com-

plex. Atomic categories are for example S (sentence), N (noun), NP (noun phrase), or

PP (prepositional phrase); they can be further refined by features such as number, case

or inflection. Complex categories are functors specifying directionality and valency

by the slashes of their arguments; they are recursively built from basic categories. For

example, the transitive verb proves carries the complex category (S\NP)/NP, specify-

ing that it takes first a noun phrase from the right and then a second noun phrase from

the left to form a sentence. Lexical categories are also known as supertags and can be

assigned with a supertagger as discussed in §2.2. The arguments of categories may be
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numbered from left to right using subscripts to identify them uniquely such as in the

following example lexicon:

Mark ` NP

completeness ` NP

proves ` (S\NP1)/NP2

walks ` S\NP1

where Mark and completeness are noun phrases, proves is a transitive verb and walks

is an intransitive verb. The entries may be augmented by semantic interpretations in

order to build semantic structure in parallel with syntactic structure. Steedman (2000)

provides a detailed account of this topic.

2.1.2 Derivations and Predicate-Argument Relations

In parsing, adjacent spans are combined using a small number of binary combinatory

rules on the spanning categories. The resulting structure is referred to as a derivation;

we detail efficient algorithms for this task in §2.3.4. The categories are combined using

a small set of combinatory rules, such as forward application (>) and backward appli-

cation (<) which were inherited from Categorial Grammar (Bar-Hillel, 1953; Wood,

1993):

X/Y Y ⇒ X (>) (2.1)

Y X\Y ⇒ X (<) (2.2)

where X and Y denote either basic or complex categories. Forward application com-

bines a constituent of the form X/Y , followed by a constituent Y , into X , similarly for

backward application.

Derivations are written as in Figure 2.1; underlines indicate combinatory reduction

and arrows indicate the direction of the application:

Mark proved completeness

NP (S\NP)/NP NP
>

S\NP
<

S

Figure 2.1: Example CCG derivation using forward and backward application.
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Mark proved completeness

NP (S\NP1)/NP2 NP
>

S\NP1

<proved, (S\NP1)/NP2, 2, completeness>

(a)

Mark proved completeness

NP (S\NP1)/NP2 NP
>

S\NP1
<

S

<proved, (S\NP1)/NP2, 1, Mark>

(b)

Figure 2.2: Illustration of creating predicate-argument relations during two derivation

steps. In (a) the forward application (>) fills the object noun-phrase argument of proved,

in bold, with completeness and creates a dependency between the two words, illus-

trated by the arrow. Similarly, in (b) the backward application (<) creates a dependency

between proved and Mark. The relations built in each step are shown below the deriva-

tions; arrows point from predicates to arguments.

In this example, a predicate-argument relation is created in each derivation step,

as illustrated in Figure 2.2. Formally, a predicate-argument relation is defined as a

four-tuple (Clark and Hockenmaier, 2002; Hockenmaier, 2003a): 〈h,c,s,d〉 where h is

a head word, c is the lexical category associated with the head word, s is the argument

number of the lexical category filled by the dependency, and d is head word of the

argument; a head word is the single most characterising word of a syntactic constituent.

A predicate-argument structure y = {τ1,τ2, . . .} is a set of predicate-argument

relations τi; sometimes predicate-argument structures are also referred to as depen-
dency structures and the relations are simply referred to as dependencies. Predicate-

argument structures are the main syntactic output of a CCG parser and form the basis

for evaluation (§3.2). It is worthwhile to point out that there can be multiple derivations

for a single predicate-argument structure (§2.1.3) and that the actual syntactic output

is not the derivation but the predicate-argument structure.

Difference to Standard Dependency-Grammars. It is worthwhile to point out that

predicate-argument relations in CCG are different to the dependencies used by depen-

dency parsers such as McDonald (2006) and Nivre et al. (2006). Standard dependency

grammars allow only relations in which each word has exactly one head. This results
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Mark wants to stay

NP (S\NPx,1)/(S2\NPx) (S\NPx,1)/(S2\NPx) (S\NP)
>

S\NP
>

S\NP
<

S

Figure 2.3: CCG derivation for the sentence used in Figure 2.4.

<to, (S\NPX,1)/(S2\NPX), 2, stay>
<wants, (S\NPX,1)/(S2\NPX), 2, to>
<stay, S\NP1, 1, Mark>
<wants, (S\NPX,1)/(S2\NPX), 1, Mark>
<to, (S\NPX,1)/(S2\NPX), 1, Mark>

Mark wants to stay

(a)

wants

Mark to

stay

       <wants, Mark>
       <wants, to>
       <to,stay>

(b)

Figure 2.4: Illustration of the dependencies created in the CCG derivation of Figure 2.3

in (a) and a standard dependency analysis (b).

in a tree-shaped dependency graph with n−1 edges for an n-word sentence where each

edge corresponds to a head-dependent relationship between two words. For CCG, the

number of dependents is determined by the number of arguments each word takes

according to its lexical category. Figure 2.3 shows a CCG derivation for a simple

sentence and Figure 2.4 compares the predicate-argument relations for this derivation

to the dependencies of a standard dependency grammar. The dependency analysis has

three dependencies, whereas the CCG analysis has five predicate-argument relations

in which wants and to have multiple heads. The CCG derivation contains lexical cate-

gories with variables x, these variables allow the creation of long-range dependencies

by passing head information between categories via unification. For example, to has

the lexical category (S\NPx,1)/(S2\NPx) which identifies the head of argument NPx

also as the head of NPx,1. The head being passed by the category for to is stay, which

results in an extra dependency between stay and Mark. The distinction between CCG



12 Chapter 2. Background

Mark proved completeness

NP (S\NP)/NP NP
>

S\NP
<

S
(a)

Mark proved completeness

NP (S\NP)/NP NP
>T

S/(S\NP)
>B

S/NP
>

S
(b)

Figure 2.5: Illustration of two derivations for the same sentence resulting in the same

predicate-argument relations. The example in (a) first fills the object noun phrase of

proved and then the subject noun phrase, whereas the second example (b) does it in

reverse order.

predicate-argument relations and standard dependency grammars is sometimes also

referred to as “deep syntax” versus “shallow syntax”, respectively.

2.1.3 Spurious Ambiguity and Normal-form Derivations

In the previous section we have discussed predicate-argument relations and how they

are created during the derivation process. In this section we will describe the rules

causing spurious ambiguity and how to deal with this ambiguity, in order to make

practical parsing possible.

CCG extends classical Categorial Grammar (Ajdukiewicz, 1935; Bar-Hillel, 1953)

by a range of combinatory rules such as composition and type-raising. Forward (>B)

and backward composition (< B) combines two complex categories to form a new

functor:

X/Y Y/Z ⇒B X/Z (> B) (2.3)

Y\Z X\Y ⇒B X\Z (< B) (2.4)

Type-raising takes a category X and turns it into a complex functor, T/(T\X) or

T\(T/X), which can compose with other categories, where T can be instantiated with

any category that takes X as an argument.

These rules allow a different analysis of our earlier example (Figure 2.1), shown in

Figure 2.5 where we type-raise Mark and then compose it with proved. This creates the

same predicate-argument relations as in the original derivation but in a different order.

If a grammar permits multiple derivations to infer a single set of predicate-argument
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relations, then this is referred to as spurious ambiguity.

Normal-Form Derivations. One way to deal with spurious ambiguity is to consider

only normal-form derivations which use composition and type-raising only when for-

ward and backward application are not sufficient (Eisner, 1996). For a grammar which

does not use type-raising, the Eisner constraints (Eisner, 1996) can remove spurious

ambiguity via restricting analyses such that there is only a single derivation for each

predicate-argument structure1. This can be accomplished by the following restriction:

Any constituent that is the result of forward composition cannot serve as the primary

(or left) functor for another instance of forward composition or forward application.

Similarly, any constituent based on backward composition cannot serve as the primary

(right) functor for another backward composition or backward application.

Here we have focused on the most common combinatory rules. A range of other

combinatory rules such as backward crossing composition and substitution are detailed

in Steedman (2000).

2.2 Supertagging

Supertagging (Bangalore and Joshi, 1999; Clark, 2002) is the task of assigning lexical

types or supertags to each word in a sentence; for CCG these are the lexical categories

discussed in §2.1.1. Supertagging has been successfully applied to both Lexicalised

Tree Adjoining Grammar (LTAG; Schabes 1991) by Bangalore and Joshi (1999) and

to CCG by Clark (2002) and Curran et al. (2006).

In this section we will introduce supertagging as a tagging problem which relies on

a simple sequence model over words (§2.2.1). We will also discuss how a supertagged

sentence has much ambiguity removed, which is why it is sometimes referred to as

almost parsing. In §2.2.2 we will discuss the state-of-the-art approach to parsing with

lexicalised formalisms using a supertagger. This approach presents the baseline upon

which this thesis improves.

1This assumes a grammar without type-raising. Practical parsers such as Clark and Curran (2007)
implement type-raising but define a very constrained set of type-raising rules which limit the number of
spurious derivations.
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time flies like an arrow
NP NPS\NP ((S\NP)\(S\NP))/NP NP/NP

(NP\NP)/NP
PP/NP

(S/S)/NP

NPN/N
(S\NP)/PP

... ...

(S\NP)/S
(S\NP)/NP
((S\NP)/PP)/NP
(S\NP)/S

((S\NP)/(S\NP))/S
(PP/PP)/NP
PP/S
......

((S\NP)\(S\NP))/N
(NP\NP)/N NP\NP

N/N
N/S

(S\NP)\(S\NP)
S\NP

NP/NP
(S\NP)\(S\NP)

NP\NP
(S\NP)/NP

...

NP
(S\S)/N

(N/N)/(N/N)

Figure 2.6: Illustration of the possible supertags for each word in a simple sentence.

2.2.1 Almost Parsing with Sequence Models

Supertags contain rich structural information, such as the direction and valency of ar-

guments, which specify the possible syntactic environments of a word. However, there

are typically many possible syntactic environments for each word, and therefore many

possible supertags. Figure 2.6 illustrates the challenge in supertagging using a simple

sentence. Every word has a large number of possible supertags e.g. “like” may be an

adverbial preposition ((S\NP)\(S\NP))/NP modifying “flies”, or simply a preposi-

tion PP/NP amongst many others. Tagging is much harder for lexicalised grammars

than for standard Penn Treebank-style grammars because they use a much larger non-

terminal set. CCGbank (Hockenmaier and Steedman, 2007), a corpus of CCG normal-

form derivations, contains 1287 different lexical types, whereas the Penn Treebank has

less than 50 different Part-of-Speech tags. This leads to over 22 assignable supertags

per word on average for the CCG supertagger of Clark et al. (2002).

Sequence Modelling. The most successful approach to supertagging is based on

probabilistic sequence models that treat the assignment of supertags as a word labelling

problem. Such models are usually referred to as n-gram taggers, where n−1 specifies

the number of past labelling decisions taken into account when making future label

assignments. For LTAG grammars trigram Hidden Markov Models, have been very

successful (Bangalore and Joshi, 1999). Notably, the authors find that past supertag

assignments have a larger impact on absolute accuracy for supertagging than for Part

Of Speech (POS) tagging: Accuracy increases from a unigram model to a trigram

model from 77% to 92%, whereas in POS-tagging the gap is narrowed from 91% to

97% (Bangalore and Joshi, 1999).2 For CCG, discriminative sequence models (Clark,

2Relative error reduction is similar for both tasks but the absolute performance increase is signifi-
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2002; Curran et al., 2006) following Ratnaparkhi (1996) have been very successful.

Almost Parsing. A supertagged sentence vastly reduces ambiguity due to the rich

structural information encoded in the tags. This is why supertagging is sometimes

referred to as almost parsing (Bangalore and Joshi, 1999). Parsing and supertagging are

similar in the sense that they both assign a unique sequence of supertags to a sentence.

What distinguishes them is that a parser also assigns a globally consistent derivation

and dependency analysis. In fact, a supertagger may assign supertags which do not

lead at all to a sentence spanning derivation and dependency analysis. However, there

is previous LTAG work attempting to create dependency links during supertagging,

based on the dependency requirements encoded by the assigned supertag (Joshi and

Bangalore, 1994). This is only a partial solution since the assigned supertag sequence

may still not result in a globally consistent analysis.

2.2.2 State-of-the-art CCG Parsing with Adaptive Supertagging

In the previous section we have discussed the effectiveness of supertagging to reduce

the number of lexical categories considered for each word and how this is similar

to parsing. We will now describe how supertagging is used in state-of-the-art CCG

parsing (Clark and Curran, 2007), the baseline for our integrated model described in

Chapter 5.

It is well understood that the number of possible supertags per word is a reliable

indicator of parsing speed; even more so than sentence-length (Sarkar, 2000, 2010).

Intuitively, a higher number of supertags licenses more derivations which decreases

parsing efficiency. We will refer to this as syntactic lexical ambiguity. Supertagging

directly addresses this issue by reducing the number of possible supertags considered

by a parser.

Unfortunately, practical supertaggers do not provide accurate enough single-best

supertag sequence predictions which can serve as input to a parser. Clark (2002) has

shown that the 1-best output of a supertagger significantly lowers the coverage of a

CCG parser. It is therefore common to use a multi-tagger (Curran et al., 2006) to

predict more than one supertag per word. This increases the chances that the best su-

pertag is not pruned, while removing a significant number of supertags, thus resulting

in more efficient parsing (Clark and Curran, 2004b, 2007; Sarkar, 2010). Notably, Nasr

and Rambow (2004) demonstrate for LTAG that parsing with the correct supertags is

cantly larger for supertagging.
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Valid supertag-sequences

Valid parses
High scoring 

supertags 

High scoring 
parses

Desirable parses
Attainable parses

Figure 2.7: The relationship between supertagger and parser search spaces based on

the intersection of their corresponding tag sequences.

extremely fast and accurate; a similar effect is very likely with a very accurate su-

pertagger for CCG.

Adaptive supertagging. A problem that may arise with the use of a supertagger

is that no parse can be found with the supertags returned (Figure 2.7), resulting in

decreased parsing coverage; the number of sentences for which parses can be found.

Clark and Curran (2004b) introduce adaptive supertagging, a technique that maximises

parsing efficiency while maintaining good coverage. It is based on a step function over

supertagger beam widths which determines the number of supertags returned. The

function relaxes the pruning threshold for lexical categories only if the parser fails

to find an analysis. Intuitively, adaptive supertagging can be described as follows:

Initially, the supertagger returns very few supertags and the parser attempts to find

an analysis; if it succeeds, the analysis is returned, otherwise the parser iteratively

requests more supertags. This has the advantage of achieving high parsing speed while

maintaining good coverage.

Adaptive supertagging somewhat integrates the supertagger into parsing, but fun-

damentally, they are still chained together into a pipeline. The two models only interact

when the parser fails to find an analysis. Moreover, the probabilities estimated during

supertagging are not used during parsing. This is wasteful since sequence models typ-

ically have much richer local contextual sensitivity than the tree-models for parsing.

Clark and Curran (2004a,b) find for their parser that adaptive supertagging maintains,

and in some cases increases, accuracy, while improving speed by an order of magni-

tude. In Chapter 4 we show that this efficiency increase results in lower accuracy for

the parser of Hockenmaier (2003b) and in Chapter 5 that it decreases the upper bound
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on accuracy for the parsing model of Clark and Curran (2007).

2.3 Probabilistic Models

The use of statistical or empirical methods is the prominent choice for modelling many

natural language processing tasks such as parsing and tagging. The empirical view

states that language is a natural phenomenon whose effects are observable in the world

as text or speech. If we want a computer to reason about this data, then the best thing

is to learn from it (Smith, 2006).

This section begins by discussing Conditional Random Fields (CRF), a probabilis-

tic modelling approach we use for the main contributions in this thesis (§2.3.1). The

parameters of CRFs can be estimated from training data with the use of expectations.

Estimation adjusts parameters based on the expected number of times our model be-

lieves an event should occur, compared to how often it actually does occur in the train-

ing data (§2.3.2). Once estimated, we want to use the model to make predictions, or

decode with it. We will describe Viterbi decoding to find the highest probability so-

lution, and minimum risk decoding to find a solution that is most similar to all other

high-probability solutions (§2.3.3).

We will then introduce the parsing task and how to efficiently tackle it with CKY,

an efficient dynamic program. CKY has two sister algorithms, the inside algorithm

and the outside algorithm, which can compute marginal probabilities over parses, the

basis for estimating our model (see Chapter 3). A marginal probability is the proba-

bility of a piece of the syntactic structure, i.e., a single category or dependency, being

part of any valid syntactic structure. We will succinctly describe these algorithms with

semirings and weighted deduction to make their similarities and differences explicit

(§2.3.4). There is a similar pair of algorithms for sequence models, the forward algo-

rithm and the backward algorithm, which compute expectations in a similar fashion to

their parsing counterparts (§2.3.5).

Finally, we discuss that all of these algorithms are special cases of the belief propa-

gation algorithm, which can compute expectations and maximum solutions on general

structures. We motivate this relationship by examining the semirings used by each

algorithm and the order in which quantities in the different model structures are com-

puted (§2.3.6).
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2.3.1 Conditional Random Fields

In natural language processing we want to predict an output, such as a label sequence

or a parse tree, for a given input sentence. There are two prevalent ways to design prob-

abilistic models for this purpose. First, the generative approach models both inputs x

and outputs y using a joint probability distribution p(x,y). In order to make predictions

we conditionalise the joint distribution using Bayes’ rule p(y|x) = p(x|y)p(y)
p(x) . Second,

the discriminative approach directly models the conditional distribution required for

prediction p(y|x). In this section we focus on Conditional Random Fields, a discrimi-

native approach that is the basis for the best-performing CCG parser (Clark and Curran,

2007) which we improve further in this thesis.3 The ensuing description follows the

excellent introduction to CRFs by Cohn (2007).

Conditional Random Fields (Lafferty et al., 2001) are an instance of Markov Ran-

dom Fields (MRF) which represent a probability distribution over a set of input and

output variables V = {Vi}L
i=1 with values vvv = {vi}L

i=1 as a product of local potential

functions

p(vvv) =
1
Z ∏

c∈C
ψVc(vvvc) s.t. ψVc(vvvc)> 0 (2.5)

where C is the set of cliques. A clique is a subset of variables Vc ⊂ V used by a

potential function ψVc(vvvc), and Z is the partition function which ensures that p is a

valid probability distribution, i.e., ∑vvv p(vvv) = 1. The partition function is computed by

summing out the numerator of Equation 2.5 for all possible value combinations:

Z = ∑
v1...vL

∏
c∈C

ψVc(vvvc) (2.6)

This summation is usually very expensive but in sparse models, such as typical in NLP,

dynamic programming can make the computation more efficient. We will present the

belief propagation algorithm for efficient inference in §2.3.6.

CRFs redefine the potential functions as an exponential to avoid the positivity con-

straints in Equation 2.5:

ψVc(vvvc) = exp φVc(vvvc) (2.7)

Equation 2.5 can be then be rewritten using the unconstrained functions in Equa-

3We do use a generative parser in Chapter 4 but our experimentation deals with efficient search
methods rather than changing the probabilistic model of the parser.
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T1 T2 T3

a1 a2 a3

TL-1 TL

aL-1 aL

...

...

Figure 2.8: Illustration of a linear-chain Conditional Random Field for predicting tag la-

bels for a sentence. White circles represent variables for individual tags T1 . . .TK whose

assignment is unknown and grey shaded circles are observed variables, representing

words a1 . . .aK in a sentence. The dotted lines summarise many outgoing edges which

connect the output to all other variable. Edges between observed variables have been

omitted since their correlation with each other has no bearing on the distribution of

unobserved variables.

tion 2.7, also known as log-potentials:

p(vvv) =
1
Z ∏

c∈C
exp φVc(vvvc) (2.8)

=
1
Z

exp ∏
c∈C

φVc(vvvc) (2.9)

The use of log-potentials gives considerable freedom in designing potential functions,

a compelling reason for using MRFs. CRFs are log-linear models, since they define the

log-potentials as linear functions over sets of feature functions. Each feature detects

aspects in the input and output variables, e.g., we may have a feature indicating the

number of capitalised words. Features can be real-valued but we will consider only

integer-valued functions.

Formally, the log-potentials used in CRFs are defined using K feature functions

h1(vvvc) . . .hK(vvvc), each weighted by its relative importance using parameters λ1 . . .λK ∈
θ:

ψVc(vvvc) = exp
K

∑
k=1

λkhk(vvvc) (2.10)

Figure 2.8 shows a Conditional Random Field for a simple tagging problem. Given

words a1 . . .aL, the observed variables, we want to predict a value assignment t1 . . . tL
to tag variables T1 . . .TL. The graph shows is a first-order Markov model, meaning that

only the most recent tag assignment ti−1 to Ti−1 is taken into account when assigning

a new tag ti to variable Ti. The graph has cliques for all individual tag variables as well
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as all pairs of tag variables, i.e., C = {Ti}L
i=1

⋃ {(Ti−1,Ti)}L
i=2. Individual potential

functions do not need to sum to one since the global distribution is normalised by the

partition function Z. We denote functions over individual tags as “emission” potentials

ei(ti) and functions over pairs of tags as “transition” potentials si(ti−1, ti). Note that

the the observed word sequence a1 . . .aL is an argument to every potential function but

we omitted it for brevity. We can now define a CRF as a conditional MRF which is

factorised as follows

p(t1 . . . tL|a1 . . .aL) =
1
Z

exp
L

∑
i=1

si(ti−1, ti)ei(ti) (2.11)

where the partition function is

Z = ∑
t1...tL

exp
L

∑
i=1

si(ti−1, ti)ei(ti) (2.12)

Computing the partition function Z is usually very expensive. For example, in tag-

ging we need to sum over an exponential number of possible tag-sequences for a given

sentence. We solve this problem with efficient dynamic programming algorithms de-

scribed in §2.3.4 and §2.3.5.

2.3.2 Training of Probabilistic Models

So far we have described Conditional Random Fields, a discriminative approach to

probabilistic modelling. This section discusses how to estiamte CRFs with training

methods requiring the calculation of expectations.

We assume a supervised setting in which the training data D contains pairs of input

sentences x and outputs y, e.g. tag sequences or parses, and that pairs are independently

and identically distributed. The model parameters, θ̂, are chosen to maximise

θ̂ = argmax
θ

p(θ|D) (2.13)

= argmax
θ

p(D,θ)

p(D)
(2.14)

= argmax
θ

p(D|θ)p(θ) (2.15)

where we omit the denominator p(D) since it is fixed for the maximising variable, θ.

There are two scenarios for maximisation depending on the form of the prior distri-

bution p(θ) over the parameters θ: First, maximum likelihood estimation assumes no

prior, which requires to maximise only p(D|θ). Second, maximum a posteriori estima-

tion assumes a non-uniform prior distribution. We will illustrate training of log-linear
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models under maximum likelihood estimation and then discuss changes for maximum

a posteriori estimation.

Maximum Likelihood Estimation. The maximum likelihood estimate seeks to op-

timise the conditional likelihood p(D|θ) to find the best parameters θ for modelling

D . One commonly optimises the logarithm of the conditional likelihood because the

derivatives are easier to deal with in the logarithmic domain. Formally, we are given

m training pairs D = {〈x(1),y(1)〉, . . .〈x(m),y(m)〉}, where each x(i) ∈ X is drawn from a

set of possible input sentences, and each y(i) ∈ Y (x(i)) is drawn from a set of possible

instance-specific outputs e.g. tag sequences. We want to learn the K parameters θ of a

log-linear model, where each λk ∈ θ is the real-valued weight of an associated feature

function hk(x,y) which itself is integer-valued. A function f (x,y) maps input/output

pairs to the vector h1(x,y), . . . ,hK(x,y). The conditional log-likelihood of the data is

then as follows:

`(D;θ) =
m

∑
i=1

θ
T f (x(i),y(i))− log ∑

y∈Y (x(i))

exp{θT f (x(i),y)}

 (2.16)

The first term is the weight of the correct prediction, whereas the second term is the

partition function, the sum of the weights of all possible predictions. Intuitively, this

objective is maximised when the weight of the correct prediction is large and the parti-

tion function is small. Therefore, one usually aims to choose large weights for features

applying to the correct prediction and small, or even negative, weights for features

firing on alternative predictions.

The parameters which maximise the conditional log-likelihood in Equation 2.16

cannot usually be found in closed form, however, numerical optimisation methods can

be used to find the parameters. The log-likelihood is a convex function and therefore

hill-climbing techniques can find the global optimum. There is a variety of such meth-

ods including Improved Iterative Scaling (Della Pietra et al., 1997) and Generalised

Iterative Scaling (Darroch and Ratcliff, 1972) but we mostly focus on the Limited-

memory Broyden–Fletcher-Goldfarb-Shanno method (L-BFGS) and to a lesser extent

Stochastic Gradient Descent (SGD); both are detailed in §3.4. These optimisers usu-

ally require partial derivatives with respect to the individual features, which need to be

set to zero:

∂

∂λk
=

m

∑
i=1

−hk(x(i),y(i))+ ∑
y∈Y (x(i))

exp{θT f (x(i),y)}
∑y′∈Y (x(i)) exp{θT f (x(i),y′)}hk(x(i),y)

 (2.17)
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The two terms in the brackets are both expectations over feature counts, the first,

hk(x(i),y(i)), is referred to as the empirical expectation and the second as the model

expectation. The empirical expectation of a feature simply indicates the number of

times it has been observed in the training data. For example, a feature indicating if the

word likes has been observed as a transitive verb will have in most sentences an empir-

ical count of at most one. The model expectation of this feature depends on how often

the model believes that likes should be a transitive verb. The training process tries to

match the two expectations in order to find a model which can accurately predict the

correct outputs given in the training data.

Maximum A Posteriori Estimation. One interpretation of the maximum likelihood

estimate is that it assumes the prior distribution over parameters p(θ) to be uniform.

The prior encodes some prior knowledge about the distribution of parameter values.

Typically it is used for regularisation to minimise over-fitting to the training data in

the hope that the parameters will generalise better to unseen data. A commonly used

prior is based on a Gaussian distribution, which clusters parameter values around zero

and ensures that few parameters have high magnitude. Usually, a simplified Gaussian

prior is used, as given below:

G(θ) =− ∑
λk∈θ

λ2
k

2σ2 (2.18)

This prior assumes zero mean and the standard deviations of all parameters to be equal,

σk = σ; it leaves only a single hyper-parameter σ, hence simplifying tuning. The

conditional log-likelihood in Equation 2.16 changes to

`(D;θ)′ = `(D;θ)−G(θ) (2.19)

and the partial gradients of Equation 2.17 simply become(
∂

∂λk

)′
=

∂

∂λk
− λk

σ2
k

(2.20)

2.3.3 Decoding: Viterbi and Minimum-Risk

In the previous section we discussed training of probabilistic models with maximum

likelihood and maximum a posteriori estimates. This section deals with making predic-

tions with trained models, also referred to as decoding. In natural language processing,

there are usually many possible outputs for a given input, e.g., there is a large number
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...

...

...

...

...

start end

T1 T2 TL-1 TL

Figure 2.9: Illustration of a lattice representing all paths in a sequence model with tag

variables T1 . . .TL.

of possible supertag sequences for even the most simple sentences. For the sequence

models we have seen in the previous sections, decoding can be imagined as choosing

a single path through a lattice of tags, illustrated in Figure 2.9.

Another way to think about decoding is to select the optimal solution according

to a decision rule. We introduce two such decision rules corresponding to Viterbi

decoding, which selects the highest probability solution, and minimum-risk decoding,

which chooses the solution that minimises the expected risk for a given function.

Viterbi Decoding. The decision rule for Viterbi decoding (Viterbi, 1967) selects the

output with highest probability ŷ:

ŷ = argmax
y∈Y (x)

p(y|x) (2.21)

The Viterbi algorithm computes the maximum probability solution by recursively

choosing the best path leading to the current state. For example, in a bigram sequence

model we move from the first to the last word choosing tags based on the best path so

far. Paths to the current tag are computed recursively by re-using the probability of the

best path to the previous tag and the probability of extending this path to the current

tag (Figure 2.10). At the end of the sequence, we recursively follow backpointers to

recover the sequence of tags with highest probability.

Minimum Risk Decoding. An alternative to Viterbi decoding is to select a solution
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ti

TiTi-1

ti-1

...

...

...

Figure 2.10: Illustration of the Viterbi algorithm. A path to tag ti is computed by extend-

ing all best previous paths for ti−1 (dashed lines) to ti (solid lines).

which minimises the expected risk or the expected loss for a given loss function:

ŷ = argmin
y

E
yi∼P(yi|x)

l(yi,y) (2.22)

= argmin
y

∑
yi

P(yi|x)l(yi,y) (2.23)

where l(yi,y) is a function dependent on the expected best output y and another pos-

sible output yi. In practice, minimum risk decoding is often re-cast as maximising

the expected gain for a given function, often corresponding to a metric we would like

to optimise (Goodman, 1996). If the function is simply the probability of a solution,

then minimum risk decoding can be imagined as selecting a high-probability candidate

which is at the same time most similar to other high-probability solutions. Clark and

Curran (2007) have devised an algorithm based on minimum risk decoding for their

CCG parser and we will detail it when describing their parser in §3.3.3.

The Viterbi parse can be found by using the Kronecker delta δ(yi,y) as a gain

function:

ŷ = argmin
y

∑
yi

P(yi|x)δ(yi,y) (2.24)

where δ(yi,y) is defined as

δ(yi,y) =

{
1 if yi = y

0 otherwise
(2.25)

This choice of loss function simply chooses the highest probability output, disregard-

ing all other solutions.

2.3.4 Parsing: Computing Inside and Outside Probabilities

So far we have discussed modelling approaches, estimation and inference in general

terms. This section introduces algorithms specific to parsing for computing marginal
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probabilities, the basis for the expectations required in training, and to compute max-

imum solutions for decoding. We first introduce the parsing task and weighted de-

duction, a convenient notation to describe parsing algorithms. This is followed by a

description of weighted derivations, the basis for recovering maximum solutions, and

the inside and outside values which are essential for computing expectations during

training. We then introduce efficient algorithms such as CKY to compute these quanti-

ties and show how semirings can be used to succinctly capture the similarities between

some of these algorithms which are based on the same deductive logic. The use of

weighted deduction and semirings is mostly intended to make the similarities between

algorithms explicit but also to describe further algorithms in subsequent chapters.

Parsing and Weighted Deduction. Parsing is the task of finding the syntactic or

semantic structure of a sentence using a grammar, although as previously mentioned,

we focus on the syntactic component in this thesis. Typically, grammars allow many

different structures for a single sentence, as we have seen in §2.1. In fact, for a grammar

whose rules are binary-branching, the number of possible parses is defined by the

Catalan numbers, an exponential combinatoric function (Church and Patil, 1982). It is

therefore undesirable to represent each parse individually. Instead, efficient dynamic

programs such as the CKY algorithm (Kasami, 1965) are used to compute the possible

parses in polynomial space and time. The CKY algorithm makes the assumption that

the grammar is in a special form, the Chomsky Normal Form, in which productions

are at most binary-branching. CCG is particularly well suited to the CKY algorithm

since it is by definition already in this form.

A convenient way to describe parsing algorithms is weighted deduction (Pereira

and Warren, 1983). This notation distinguishes between a ruleset and a parameter-
isation. The ruleset defines the space of possible parses and the parameterisation is

usually given by a probabilistic model which allows us to recover the most likely anal-

ysis with a decoding algorithm.4

Before describing the actual algorithms for parsing, we will motivate their use by

defining the quantities they compute and how these quantities are useful for calculating

expectations and maximum solutions.

Inside and Outside Values to compute Expectations. For CCG the syntactic output

4In CCG the ruleset is theoretically infinite but practical parsers (Clark and Curran, 2007; Hocken-
maier and Steedman, 2002) restrict the set of rules by default to the ones observed in the training data,
which makes the grammar effectively a context-free approximation (Vijay-Shanker et al., 1987).
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of a parser is a predicate-argument strucuture for which there can be many possible

derivations. We defer the discussion of modelling predicate-argument structures to a

later section (§3.3.3) and focus for now on single derivations. We define a derivation
as a sequence of rule applications r1 . . .rU . The weight w(E) of a derivation E is

defined as the product of the weights of all involved rule applications w(r1) . . .w(rU):

w(E) =
U

∏
i=1

w(ri) (2.26)

Note that we will use the terms weight and probability interchangeably, higher weights

imply higher probabilities. We define Ai, j, where i < j, as short-hand for non-terminal

A spanning words ai+1 . . .a j.5 A derivation rooted at Ai, j is a sequence of rule appli-

cations covering words ai+1 . . .a j leading to non-terminal Ai, j, where the rule applica-

tions are grammatical, i.e., valid according to the grammar.

The inside value of Ai, j is the sum of the weights of all inner-derivations leading

to this non-terminal. An inner-derivation P for Ai, j is a derivation whose rules provide

an analysis for ai+1 . . .a j that is rooted in A. The inside value is definedd as follows:

inside(Ai, j) = ∑
P∈inner-derivs(Ai, j)

w(P) (2.27)

The outside value is the sum of the weights of all outer-derivations for Ai, j. An

outer-derivation R is part of a full sentence-spanning derivation rooted at S which

passes through Ai, j, but which does not include a sub-derivation for A. The outside

value is defined as follows:

outside(Ai, j) = ∑
R∈outer-derivs(Ai, j)

w(R) (2.28)

Intuitively, the outside value is the weight of all outer-derivations that surround a non-

terminal, it is therefore in some sense the inverse of the inside value. The outside

value of a category spanning the entire sentence is one if it is grammatical. Figure 2.11

illustrates the inside and outside values.

Finally, the normalised product of the inside and outside values is the marginal
probability, or marginal, of a non-terminal:

p(Ai, j) =
1
Z

inside(Ai, j)×outside(Ai, j) (2.29)

where Z = inside(S0,L), the total weight of the graph, this is essentially the parti-

tion function discussed in §2.3.1. For simplicity, we only consider sentence-spanning
5We use the indices to denote positions between words a1 . . .aL.
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a1 ai aj+1 aL

ai+1 aj

A

S

outside 
value

inside
value

A

Figure 2.11: Illustration of inside and outside values. The inside value is the sum of

all derivations rooted at Ai, j, the outside value is the sum of all derivations rooted at S

excluding inner-derivations for A.

derivations rooted at S for the partition function, however, in practice other categories

spanning the entire sentence are equally allowed (Clark and Curran, 2007). Intuitively,

the marginal probability of a non-terminal is the probability of the sum of all rooted

derivations that pass through the non-terminal.

Marginals form the basis for computing expectations required for training a log-

linear model as described in §2.3.2. We distinguish between empirical expectations

and model expectations. Empirical expectations are simply counts of how often a

feature occurs in the training data. Model expectations are counts of how often the

model predicts that a particular feature should occur in the training data; the aim of

training is to make these counts as similar as possible (§2.3.2). The model expectation

of a feature is the normalised sum of all marginals in which the feature occurs, see the

second term in Equation 2.17.

The definitions of the inside and outside values involve summing over an expo-

nential number of derivations, which is intractable. Tackling vast derivations spaces

requires efficient algorithms. We first describe CKY, an algorithm to explore an expo-

nential number of derivations in polynomial space and time. The CKY algorithm does

not assign weights to derivations such as required for the inside and outside values.

Therfore, we detail two sister algorithms , which use weights and whose purpose is the

efficient computation of inside and outside values.

The CKY Algorithm. Our goal is to parse a sentence with words a1...aL. In order
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chart(Ai, j) = FALSE s.t. 0≤ i≤ L,1≤ j ≤ L, i < j

for i = 1 to L do
for all rules ai⇒ A do

chart(Ai−1,i) = TRUE

for len = 2 to L do // length

for i = 0 to L− len do // start

j = i+ len // end

for all rules B⇒ A do // unary rules

chart(Ai, j) = chart(Ai, j) ∨ (chart(Bi, j)

for k = i+1 to i+ len−1 // split-point

for all rules BC⇒ A do // binary rules

chart(Ai, j) = chart(Ai, j) ∨
(chart(Bi,k) ∧ chart(Ck, j))

Figure 2.12: Pseudo-code for the CKY algorithm.

to abstract away from the particulars of CCG we will use the notation ai ⇒ A for

lexical entries, representing supertags, and BC⇒ A to indicate that categories B and

C combine to form category A via forward or backward composition or application.6

Figure 2.12 presents pseudo-code for CKY.

From a weighted deduction point of view, the algorithm computes items of the

form Ai, j where A is a category, and i and j are indices ranging from 0 . . .L where

i < j. We refer to the quantity associated with an item as the item value. Inititally,

this will only be its existance, i.e., a boolean value of TRUE if the item exists and

FALSE otherwise. Items are usually arranged in a chart data structure, visualised in

Figure 2.13. The basic idea is to compute items with longer spans based on items

with shorter sub-spans. First items of the form Ai−1,i are created for all lexical tokens

ai ⇒ A. Then longer items Ai, j are constructed based on shorter adjacent items Bi,k,

Ck, j until items spanning the entire sentence S0,L are built.

We succinctly describe the CKY algorithm using a set of inference rules which

deduce items. An inference rule requires a set of true items in the antecedent, the top

of the rule, in order for the consequent, the bottom, to become true. Figure 2.14 shows

6These correspond to unary rules A→ ai and binary rules A→ BC in a context-free grammar in
Chomsky normal form.
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a1 aL

S S\NP

NP

Figure 2.13: Illustration of a CKY chart which is essentially half of a two-dimensional

array with L2 entries.

Item form : Ai, j Goal : S0,L

CKY−Base :
ai⇒ A
Ai−1,i

CKY−Unary :
Bi, j B⇒ A

Ai, j

CKY−Binary :
Bi,k Ck, j BC⇒ A

Ai, j

Figure 2.14: CKY algorithm in deductive form.

CKY in this notation which is borrowed from Shieber et al. (1995), Goodman (1999)

and Lopez (2009). The base case (CKY−Base) corresponds to the first for-loop in

the pseudo-code (Figure 2.12); its role is to assign lexical categories to every word.

The CKY−Unary rule simply builds a new item Ai, j based on an existing item Bi, j

with the same span using a rule B⇒ A such as type-raising. The CKY−Binary rule

combines two adjacent items into a larger item; the deductive process finishes when all

sentence-spanning items S0,L are built.

Figure 2.15 shows a hypergraph representation of a forest, a collection of multiple

derivations based on structure-sharing. In hypergraph notation, items are referred to as

states and instances of grammatical rules, such as forward application, as transitions

between states, i.e., BC⇒ A is a transition from states B and C to state A. Figure 2.15

also illustrates the GOAL state: Sentence-spanning states S0,L can make a final tran-
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Mark1 proved2 completeness3

NP0,1,0,0 (S\NP)/NP1,2,0,0 NP2,3,0,0

S\NP1,3,3,3

S0,3    

S/NP0,2,0,1

S/(S\NP)0,1,0,0

GOAL

Figure 2.15: Hypergraph for a parse forest representing the two derivations for the

sentence Mark proved completeness shown in Figure 2.5. The categories in the hy-

pergraph have the start and ending position as subscripts; this is not to be confused

with the argument indices of lexical categories. A hypergraph is a convenient way to

visualise the structure sharing in dynamic programs for parsing.

sition to the GOAL state.7 The GOAL state simply links to all grammatically valid

sentence-spanning derivations.

The weighted deduction notation makes determining the complexity of an algo-

rithm straightforward: Inspection of the inference rules and items is all that is required

(McAllester, 1999; Lopez, 2009). For example, the item form reveals that there can be

no more than O(GL2) items. An item specifies a single non-terminal from the set of

grammar non-terminals G and indices range from 0 . . .L. Time complexity is O(G3L3)

since the most complex recursive rule CKY−Binary (Figure 2.14) contains at most

three indices, i, k and j, which range over 0 . . .L, and the antecedent of the rule con-

tains three non-terminals A, B and C, resulting in the cubic grammar constant.

The CKY algorithm described so far can be used to efficiently recognise valid

sentences according to a given grammar, however, it cannot compute expectations and

maximum probability parses. Next, we present a variant of the algorithm that can

compute the inside value efficiently.

Inside Algorithm. The inside algorithm (Baker, 1979) computes inside values of

items I(Ai, j). We give pseudo-code for this algorithm in Figure 2.16. Comparing the

7Practical parsers such as Clark and Curran (2007) also allow other non-terminals to transition to the
GOAL state.
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inside(Ai, j) = 0 s.t. 0≤ i≤ L,1≤ j ≤ L, i < j

for i = 1 to L do
for all rules ai⇒ A do

inside(Ai−1,i) = w(ai⇒ A)

for len = 2 to L do // length

for i = 0 to L− len do // start

j = i+ len //end

for all rules B⇒ A do // unary rules

inside(Ai, j) = inside(Ai, j)

+ inside(Bi, j) × w(B⇒ A)

for k = i+1 to i+ len−1 // split-point

for all rules BC⇒ A do // binary rules

inside(Ai, j) = inside(Ai, j)

+ inside(Bi,k) × inside(Ck, j)

× w(BC⇒ A)
)

Figure 2.16: The inside algorithm in procedural form.

algorithm with CKY in Figure 2.12 reveals many similarities. The main difference is

the operators used by the inside algorithm: the logical ∨ and ∧ are substituted for +

and ×. Similarly, weights w(ai⇒ A) replace true and false values.

We can succinctly capture these differences with semirings. A semiring is defined

as a five tuple 〈A,⊕,⊗,0,1〉 with elements A, additive operator ⊕, multiplicative op-

erator ⊗, additive identity 0 and multiplicative identity 1. The additive operator ⊕
needs to be associative (a⊕ b)⊕ c = a⊕ (b⊕ c) and commutative a⊕ b = b⊕ a, and

the multiplicative operator ⊗ must be associative and needs to distribute over ⊕, so

a⊗ (b⊕ c) = a⊗b⊕a⊗ c. For the identities we require a ⊕ 0= a and a ⊗ 1= a.

Semirings can be used to succinctly describe parsing algorithms (Goodman, 1999).

For example, the difference between the CKY algorithm and the inside algorithm can

be captured in the boolean and inside semirings, respectively, given in Table 2.1.

Restating the inside algorithm in terms of deductive logic and semirings (Fig-

ure 2.17) makes the similarities with CKY (see Figure 2.14) even more explicit. Note

that Figure 2.17 introduces new notation to explicitly represent the weight of rule ap-

plications and item values: The weight w(BC⇒ A) of rule BC⇒ A is denoted as wr in
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Item form : I(Ai, j) Goal : I(S0,L)

IN−Base :
ai⇒ A : wr

I(Ai−1,i) : wr

IN−Unary :
I(Bi, j) : w1 B⇒ A : wr

I(Ai, j) : w1⊗wr

IN−Binary :
I(Bi,k) : w1 I(Ck, j) : w2 BC⇒ A : wr

I(Ai, j) : w1⊗w2⊗wr

Figure 2.17: Inside algorithm in deductive form.

notation BC⇒A : wr.8 The deductive logic description does not make explicit the sum-

ming, or the combination of items, when multiple derivations lead to the same item.

Identical items are combined using the additive operator, which computes the sum of

the weights for the inside algorithm. The values computed by the inside algorithm can

be summarised by the following recursions:

I(Ai−1,i) = w(ai⇒ A) (2.30)

I(Ai, j) =
⊕
k,B,C

I(Bi,k) ⊗ I(Ck, j) ⊗ w(BC⇒ A)

I(GOAL) =
⊕

S

I(S0,L)

The value of items based on lexical entries I(Ai−1,i) is the weight of the corresponding

lexical rule ai ⇒ A. Subsequent items are the sum of the weights of all items that

can combine into A, this includes the weight of the rule licensing the combination

w(BC⇒ A). The value of the GOAL state is the sum of the weights of all sentence-

spanning items I(S0,L).

We can use the Viterbi semiring in Table 2.1 to compute the weight of the best

derivation (§2.3.3). The inside semiring sums where Viterbi takes the maximum. The

highest probability derivation can be recovered by keeping back-pointers b(Ai, j) which

index for each item Ai, j the best previous items Bi,k, Ck, j according to Equation 2.30.

8The deductive logic description of CKY in Figure 2.14 does not require explicit enumeration of the
item values because the simple existence of an item suffices to operate the CKY deductive rules.
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boolean 〈{TRUE,FALSE},∨,∧,FALSE,TRUE〉
inside 〈R∞

0 ,+,×,0,1〉
Viterbi 〈R∞

0 ,max,×,0,1〉

Table 2.1: Semirings used within the CKY deduction logic.

The back-pointers are defined as:

b(Ai, j) = 〈k,B,C〉= argmax
k,B,C

Bi,k×Ck, j×w(BC⇒ A)

The best parse can be recovered by recursively following the back-pointers from the

root b(S0,L) to the leaves b(Ai−1,i) by which we find the full maximising parse.

Outside Algorithm. Outside values can be efficiently computed with the outside

algorithm (Baker, 1979) given in Figure 2.19. The algorithm requires all inside values

I(Ai, j) and proceeds in the reverse direction of the inside algorithm: Starting from

sentence-spanning inside items I(S0,L), outside items are computed based on other

outside and inside items:

O(GOAL) = 1 (2.31)

O(Bi, j) =
⊕
k,A,C

[
O(Ai,k) ⊗ I(C j,k) ⊗ w(BC⇒ A)

]
⊕ (2.32)

⊕
k,A,C

[
O(Ak, j) ⊗ I(Ck,i) ⊗ w(CB⇒ A)

]
The outside value of the GOAL state O(GOAL) in Equation 2.31 is assigned the multi-

plicative identity of the inside-semiring, i.e., 1. The second recursion in Equation 2.32

has two parts, each dealing with B being either on the left or the right of its sibling A

(Figure 2.18). The recursion for unary rules is omitted, it simply computes new outside

values based on the parent-outside value and the weight of the unary rule.

Figure 2.20 shows the corresponding deductive inference rules. Inside items have

been previously computed by the inside algorithm. The algorithm deduces the first

outside item from an inside item covering the entire sentence using OUT−Base. It

then builds smaller and smaller outside items by using adjacent left or right inside items

as well as outside items for the parent category (OUT−Left, OUT−Right). Similar

to the inside algorithm (Figure 2.17), the deductive rules for the outside algorithm do
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Figure 2.18: Illustration of the two sums computed in Equation 2.32 to compute O(Bi, j).

The left subgraph corresponds to the first sum and the second subgraph to the second

sum. Shaded parts of the parse trees correspond to the item values involved in the

sum.

for len = L to 2 do // span length

for i = 1 to L− len do // start

j = i+ len // end

for k = i+1 to i+ len−1 do // split-point

for all rules BC⇒ A do
outside(Bi,k) = outside(Bi,k) +

outside(Ai, j) × inside(Ck, j) × w(BC⇒ A)

outside(Ck, j) = outside(Ck, j) +

outside(Ai, j) × inside(Bi,k) × w(BC⇒ A)

Figure 2.19: Pseudo-code for the outside algorithm.
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Item form : O(Ai, j) Goal : O(Ai−1,i)

OUT−Base :
I(S0,L) : w1

O(S0,L) : 111

OUT−Left :
I(C j,k) : w1 O(Ai,k) : w2 BC⇒ A : wr

O(Bi, j) : w1⊗w2⊗wr

OUT−Right :
I(Ck,i) : w1 O(Ak, j) : w2 CB⇒ A : wr

O(Bi, j) : w1⊗w2⊗wr

Figure 2.20: Outside algorithm in deductive form.

not make explicit the summing, or the combination of items. But similar to before,

identical items are combined using the additive operator, which computes the sum of

the outside values leading to the same items.

2.3.5 Tagging: Forward and Backward Probabilities

So far we have discussed algorithms for efficiently computing expectations and max-

imum solutions for parsing. This section will discuss similar algorithms for tagging,

treating the assignment of tags as a sequence labelling problem.

Sequence models take the form of chain graphs such as illustrated by the Condi-

tional Random Field in Figure 2.21. We assume a first-order Markov model (§2.3.1)

to predict a sequence of tags t1 . . . tL. This is modelled by “emission” potential func-

tions over individual tags ei(ti), and “transition” potentials over pairs of tags si(ti−1, ti);

their dependence on words a1 . . .aL is omitted for brevity. Similarly to parsing models,

we require marginal probabilities for computing feature expectations. The marginal

probabilities are given by the forward and backward values which can be computed

by the forward and backward algorithms, sister algorithms to the inside and outside

algorithms in parsing.

Forward Algorithm. The forward value Fi(ti), of a tag ti, is the sum of the weights



36 Chapter 2. Background

T1 T2 T3

a1 a2 a3

TL-1 TL

aL-1 aL

...

...

Figure 2.21: Illustration of a Conditional Random Field for tagging as given earlier in

Figure 2.8.

of all partial paths starting at T1 and ending at Ti = ti covering a1 . . .ai. The forward

value for tag ti is given as:

Fi(ti) =
⊕

t1...ti−1

[
i⊗

j=1

s j(t j−1, t j) e j(t j)

]
(2.33)

where each Fi(Ti) is a vector of values for all ti ∈ Ti. Computing the forward value

in this way involves summing over an exponential number of tag sequences which

is intractable. The forward algorithm can compute the forward values efficiently. We

will use the general semiring notation from §2.3.4 and assume the inside semiring from

Table 2.1. The forward algorithm is given by the following recursions:

F1(t1) = 1 (2.34)

Fi(ti) =
⊕
ti−1

[Fi−1(ti−1)⊗ si(ti−1, ti)⊗ ei(ti)] (2.35)

where Equation 2.34 forms the base case from which Equation 2.35 can be computed

for i = 2 . . .L. The partition function is given by the sum of the final forward values

Z =
⊕

tL FL(tL).

Backward Algorithm. Similarly, the backward value Bi(ti) for tag ti is the sum of

the weights of all partial paths starting at ti and ending at TL covering ai . . .aL. The

backward values for tag ti can be efficiently computed with the backward algorithm:

BL(tL) = 1 (2.36)

Bi(ti) =
⊕
ti+1

[Bi+1(ti+1)⊗ si+1(ti, ti+1)⊗ ei+1(ti+1)] (2.37)

Similarly to parsing, we can compute the marginal probability of a tag as the

normalised product of the forward and and backward values which can be used for
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Item form : Fi(Di) Goal : FL(DL)

Forw−Base : :
R(start,D) : wr

F1(D1) : wr

Forw−Recursive :
Fi(Di) : w1 R(D,E) : wr

Fi+1(Ei+1) : w1⊗wr

Figure 2.22: Forward algorithm in deductive form.

Item form : Bi(Ai) Goal : B1(D1)

Back−Base :
R(A,end) : wr

BL(DL) : wr

Back−Recursive :
Bi(Di) : w1 R(E,D) : wr

Bi−1(Ei−1) : w1⊗wr

Figure 2.23: Backward algorithm in deductive form.

computing model expectations:

p(ti) =
1
Z

F(ti)B(ti) (2.38)

where the partition function is

Z = ∑
tL

FL(tL) = ∑
t1

B1(t1) (2.39)

which is the probability of all tag sequences.

The highest probability tag sequence can be computed with the Viterbi algorithm

described in §2.3.3, this is essentially the forward algorithm in Equation 2.34 and

Equation 2.35 using the Viterbi semiring from Table 2.1. The Viterbi tag sequence

can be recovered by keeping back-pointers, as described in §2.3.3.
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Deductive Logic Description. We can also describe the algorithms using deductive

logic. Figure 2.22 gives the forward algorithm in deductive form. The algorithm com-

putes items Fi(Di) representing the forward value for tag D at position i. The algorithm

begins at the start of the sentence and deduces items for position 1 using Forw−Base;

this uses the rule R(start,D) : wr which licenses the combination of the start sym-

bol and category D. Rules are augmented by weights wr that combine the weights of

the emission and transition factors. The recursive rule Forw−Recursive builds items

from left to right until the end of the sentence is reached. The backward algorithm in

Figure 2.23 computes backward items Bi(Di) following a similar logic but proceeds

from right to left.

2.3.6 General Inference with Belief Propagation

In the previous section we have seen specific algorithms for computing marginal proba-

bilities and maximum probability solutions for parsing and supertagging. This section

describes belief propagation, an algorithm for computing these quantities in general

model topologies.

Before introducing the algorithm, we will describe factor graphs, a convenient way

to visualise joint probability distributions with potential functions over many variables.

We then introduce the sum-product algorithm, a variant of belief propagation to com-

pute marginal probabilities. Next, we discuss max-product belief propagation to com-

pute maximum probability solutions. Finally, we discuss the relationship between the

specific algorithms for parsing and tagging introduced earlier and belief propagation.

Factor graphs. These graphs (Kschischang et al., 1998) make the factorisation of

global functions, or probability distributions, into local functions explicit. A factor

graph is a bipartite graph with nodes for variables and squares for factors, which rep-

resent potential functions over subsets of variables. Borrowing notation from §2.3.1,

we can describe a factor graph as the factorisation of a complex function g(vvv), where

vvv is a set of value assignments vvv = {vi}L
i=1 to variables V = {Vi}L

i=1. The complex

function is a product of local potential functions ψV f (vvv f ) over subsets of variables Vf :

g(vvv) = ∏
f∈F

ψV f (vvv f ) (2.40)

where f ∈ F is a factor from the set of all factors F for this graph. Figure 2.24 shows

a factor graph for the CRF in Figure 2.21; the graph factors the words directly into the
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T1 T2 T3s2

e1

s3

e2 e3

... TL-1 TL

eLeL-1

sL

Figure 2.24: Factor graph representation of the Conditional Random Field in Fig-

ure 2.21. Squares represent factors and circles variables. There are emission factors

ei(ti) for each tag variable Ti and transition factors si(ti−1, ti) computed over pairs of

variables ti−1, ti.

emission factors ei since their values are observed.9

Sum-Product Belief Propagation. The sum-product algorithm computes marginal

distributions over variables in a factor graph. The marginal over variable Vi can be

obtained by marginalising, or summing, over the remaining variables. For the purpose

of explaining belief propagation we will use notation that indicates the variables over

which we are not summing, which in this case is only Vi:10

p(vi) = ∑
∼{vi}

p(vvv) (2.41)

Computing this sum naively is intractable for most models since there is an exponen-

tial number of values in the number of variables. The sum-product algorithm (Pearl,

1988) computes the sums required by the forward value (Equation 2.33) or the inside

(Equation 2.27) and outside values (Equation 2.28) recursively by passing messages in

a factor graph.

The idea behind sum-product belief propagation (Pearl, 1988; Kschischang et al.,

1998) is to pass messages between variables and factors in the graph after which

marginals can be computed based on the message values. We can send a message

between variable Vi and a factor f which we denote as mVi→ f (vi) where vi is a value

of Vi; messages are vectors with an element for each value of Vi, the vector quantities

9Equivalently, one could use a single emission factor connected to all variables since factors in CRFs
have access to all observations.

10This notation is borrowed from Kschischang et al. (1998).
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Figure 2.25: Illustration of message passing: Outgoing messages can only be sent over

an edge if all other edges have received a message.

represent the result of summing out all other variables:

mVi→ f (vi) = ∏
h∈n(Vi)\ f

mh→Vi(vi) (2.42)

where n(Vi) is the set of all neighbours of Vi. Because the graph is bipartite, all neigh-

bours of a variable are factors and all neighbours of a factor are variables. It is common

that messages are normalised to sum to one in order to avoid numerical overflow. A

message m f→Vi(vi) from a factor to a variable aggregates all incoming messages and

takes into account the factor-function:

m f→Vi(vi) = ∑
∼{vi}

[
f (X) ∏

Vu∈n( f )\Vi

mVu→ f (vu)

]
(2.43)

where X = n( f ) is the set of arguments of the factor function f . Note that messages

from variables to factors can be seen as messages from factors to variables with a

factor-function that always returns 1.

Message Passing. The order in which messages are sent is referred to as the message

passing schedule. Any schedule has to adhere to the sum-product rule (Kschischang

et al., 1998) which states that nodes or factors with multiple neighbours must have

received incoming messages from all neighbours, except for the neighbour to which

a message will be sent, before they themselves can send messages. This requirement

ensures that Equations (2.42) and (2.43) are valid and Figure 2.25 illustrates it.

Message passing typically starts from a leaf variable or factor with only a single

neighbour and proceeds to a root variable. Once the root has received messages on

all edges, its marginal can be computed as the product of all these messages; this

corresponds to a single outward pass. However, typically we would like to compute

the marginals of all variables, not only the root. This can be achieved by propagating
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messages back from the root to the leaves, referred to as an inward pass. The message

values converge in an acyclic graph after these two passes.

After message passing we are ready to compute the marginals of the variables.

Marginals are also referred to as beliefs BVi(vi); a belief is the normalised product of

all incoming messages of a variable Vi.

BVi(vi) =
1
Z ∏

h∈n(Vi)

mh→Vi(vi) (2.44)

where the normalisation constant Z sums over all possible values vi.

Max-Product Belief Propagation. For decoding we can use max-product belief

propagation which computes the probability of the best variable assignment, i.e., v̂vv =

argmaxvvv p(vvv). This requires only a small change to the sum-product algorithm:

m f→Vi(vi) = max
∼{vi}

[
f (Vi) ∏

Vu∈n( f )\Vi

mVu→ f (vu)

]
(2.45)

Equation 2.45 replaces the sum in Equation 2.43 with a max operator. The messages

correspond to the maximum probability rather than the total probability. Messages are

passed in a similar fashion to the sum-product algorithm but now we require only an

outward pass since then we have found the value of the maximum variable assignment.

The maximising configuration can be recovered by keeping back-pointers in the same

way as with the Viterbi algorithm (§2.3.4).

Belief Propagation with Semirings. We have seen that the max-product algorithm is

essentially the sum-product algorithm but with a different “summing” operator. More

generally, belief propagation can be used with any pair of operators, if they form a

commutative semiring (Cohn, 2007). To recap from §2.3.4, a semiring has a multi-

plicative operator ⊗ and an additive operator ⊕ which can be thought of as × and +

for sum-product and max and + for max-product.

With this notation we generalise belief propagation as follows (Kulesza and Taskar,

2010): The message from a variable Vi to factor f (Equation 2.42) becomes

mVi→ f (vi) =
⊗

h∈n(Vi)\ f

mh→Vi(vi) (2.46)

and messages from factors to variables (Equation 2.43 and 2.45) become

m f→Vi(vi) =
⊕
∼{vi}

 f (X) ⊗
⊗

Vu∈n( f )\Vi

mVu→ f (vu)

 (2.47)
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sum-product 〈R∞
0 ,+,×,0,1〉

max-product 〈R∞
0 ,max,×,0,1〉

Table 2.2: Semirings for belief propagation (cf. semirings for parsing in Table 2.1).

which is the product of all but one incoming messages and the factor function; for

sum-product we sum over all variable configurations ∼ {vi}, and for max-product we

retain the maximum configurations.

The semirings for sum-product and max-product are given in Table 2.2. They are

identical to the semirings we presented for the inside and outside algorithms in Ta-

ble 2.1, which we also used in the forward and backward algorithms. This serves as

the first evidence that these algorithms are specific cases of belief propagation and we

will discuss this connection next.

Forward and Backward is Belief Propagation. We have already shown that the

semirings for computing marginals and maxima in sequence models are identical to the

semirings used by sum-product and max-product belief propagation. We now illustrate

that the forward and backward values correspond to messages passed in a factor graph

and that the forward and backward algorithms are special instances of the general belief

propagation algorithm. Here we give the intuition following Sutton and McCallum

(2011); formal proof can be found in Smyth et al. (1997). The main forward/backward

equations are reproduced for reference:

Fi(ti) =
⊕
ti−1

[Fi−1(ti−1)⊗ si(ti−1, ti)⊗ ei(ti)] (2.48)

Bi(ti) =
⊕
ti+1

[Bi+1(ti+1)⊗ si+1(ti, ti+1)⊗ ei+1(ti+1)] (2.49)

The forward algorithm chooses the final tag variable TL as the root and sends mes-

sages from T1 in its direction as illustrated by Figure 2.26. At T2 we receive two

messages whose product is the forward value F2(t2) as given by the forward algorithm

in Equation 2.48: The message ms2→T2(t2) is the product of the sum of all previous

messages F1(t1) as well as the factor function s2(t1, t2); and me2→T2(t2) is the value

of the emission factor function e2(t2). The messages therefore correspond to the for-

ward algorithm given in Equation 2.48. The backward algorithm chooses T1 as the root

and passes messages from TL in the reverse direction. At T2 we receive two messages
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T1 T2 T3s2

e1

s3

e2 e3

ms2→T2
(t2) ms3→T2

(t2)

me2→T2
(t2)

Figure 2.26: Illustration of message passing in a factor graph for a sequence model:

The marginal probability of t2 is the product of three messages: The product of

ms1→T2(t2) and me2→T2(t2) corresponds to the forward value F2(t2), and ms2→T2(t2)

corresponds to the backward value B2(t2).

whose product is the backward value B2(t2) as given by the backward algorithm in

Equation 2.49: Message ms3→T2(t2) is the product of the sum of all previous messages

B3(t3) and the factor function of s3(t2, t3); and me3→T3(t3) is the value of the emission

factor function e3(t3). The messages therefore correspond to the backward algorithm.

Inside and Outside is Belief Propagation. The inside algorithm and the outside algo-

rithm are special cases of belief propagation; formal proof can be found in Sato (2007).

Parsing forests can be represented as hypergraphs as we have seen earlier in §2.3.4.

Figure 2.27(a) shows the hypergraph for our running example and Figure 2.27(b)

shows the corresponding simplified factor graph. The factor graphs arising in pars-

ing take a special form: They have a quadratic number of variables span(i, j) with

values corresponding to the categories Ci, j which can be built over words ai+1 . . .a j;

we refer to them as span variables.

A TREE factor defines a distribution over the joint assignment to all span variables

for a given sentence. The factor assigns only positive probability mass to value as-

signments which result in valid derivations according to the grammar. It also excludes

overlapping child categories and invalid rule combinations. The factor is formalised by

an extension to graphical models called case-factor diagrams (McAllester et al., 2008)

which construct and/or graphs to represent the structure of possible derivations.
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(b) Factor graph

Figure 2.27: Hypergraph (a) and corresponding simplified factor graph (b).

2.4 Conclusions

In this chapter we have introduced the background on which the remainder of this the-

sis builds. We first discussed Combinatory Categorial Grammar (CCG), the formalism

used throughout all experiments. CCG is based on a lexicon, containing a syntactic

type for every word in the language as well as a small set of combinatory rules.

The central theme of this thesis is to combine supertagging and parsing. Supertag-

ging is the task of assigning lexical types, or supertags, to words. Supertags contain a

large amount of structural information, which is why supertagging massively reduces

ambiguity. The baseline approach to the methods introduced in this thesis is adaptive

supertagging, a shallow combination method for parsing and supertagging that max-

imises efficiency while maintaining good coverage. However, adaptive supertagging

does not allow the parser to recover from errors made during tagging and it also dis-

cards the probabilities computed by the supertagger.

The basis for the methods presented in the following chapters are probabilistic

models and inference methods. Probabilistic models are the predominant choice to

tackle natural language processing tasks. We described Conditional Random Fields, a

discriminative modelling approach which is the basis for the integrated supertagging

and parsing model discussed in Chapter 5. Expectations are the basis for training dis-

criminative models with gradient-based optimisation methods. Model parameters are

adjusted such that empirical expectations, observed in the training data, are assimilated
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to the model expectations. We experiment with two approaches to decoding: Viterbi

decoding finds the highest-probability configuration while as minimum risk decoding

finds a solution which minimises the expected risk given a loss function.

Parsing is the central theme of this thesis and we therefore reviewed CKY, an effi-

cient algorithm to explore an exponential number of analyses in polynomial space and

time. Its two sister algorithms, the inside algorithm and the outside algorithm, compute

marginal probabilities, or just marginals, over categories. Marginals are the basis for

model expectations of individual features. Substitution of appropriate semirings into

the CKY logic allows the computation of inside values and Viterbi parses. Marginals in

supertaggers can be computed with the forward algorithm and the backward algorithm.

Our combined supertagging and parsing model (Chapter 5) uses belief propagation

for inference. Belief propagation is an algorithm for computing marginal and maxi-

mum probabilities in general model structures with the sum-product and max-product

update rules, respectively. The inside and outside algorithms, as well as the forward

and backward algorithms, are specialised variants of belief propagation.

The following chapters will build on these methods to describe more accurate as

well as more efficient parsing models.





Chapter 3

Experimental Setup

This thesis proposes an integrated model for supertagging and parsing which we apply

to parsing with Combinatory Categorial Grammar (CCG). We use efficient inference to

make this model practical and to improve the accuracy of state-of-the-art CCG parsing.

This chapter presents the corpus we used to train and evaluate our models, the

methods to measure performance and the configuration of the parsing and supertagging

models. Finally, we detail the settings of the employed estimation methods. We aim

to deviate as little as possible from previous work on CCG parsing in order to allow

meaningful comparisons. We use the same data and evaluation methods, and, as much

as possible, the same feature-sets, settings and training regimen of our baseline models.

The chapter is structured as follows: First, we describe CCGbank, the corpus we

used for training and testing (§3.1). We then discuss how we measured performance

both in terms of accuracy and efficiency (§3.2). Next we describe the baseline models

of our work. Our description builds on the algorithms and probabilistic models we

introduced in Chapter 2 but also details the exact settings we used with each system.

First, we describe the supertagger of Clark (2002) and Curran et al. (2006) and its

settings, which we used throughout this thesis (§3.3.1). Second, we detail the settings

of the generative parser of Hockenmaier (2003a), which we use in Chapter 4 (§ 3.3.2).

Third, we describe the discriminative parser of Clark and Curran (2007), which was

the best performing model on CCGbank before this work and is therefore the baseline

for our integrated model (§3.3.3). Finally, we detail the training of the parser of Clark

and Curran (2007) since we used slightly different settings than described in their work

(§3.4).

47
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Training Development Test

Sections 02-21 00 23

Words 929552 45422 55371

Sentences 39604 1913 2407

Table 3.1: Statistics for the CCGbank corpus split used for training, development and

test.

3.1 CCGbank

CCGbank (Hockenmaier and Steedman, 2007) is the corpus we use to train and test

our models throughout this thesis. It is a normal-form CCG version of the Penn Tree-

bank (Marcus et al., 1993). Normal-form means that it uses composition and type-

raising only when necessary. The corpus was created semi-automatically by convert-

ing the phrase-structure trees in the Penn Treebank. This conversion required some

pre-processing such as correcting POS tagging errors and ensuring that the constituent

structure conforms to the CCG analysis; Hockenmaier and Steedman (2007) describes

the conversion procedure in detail.

Features. Some categories can carry features to distinguish different types of sen-

tences and verb phrases. Sentence categories S can be either separated into declarative

sentences S[dcl], or wh-questions S[wq] amongst others. Verb phrases S\NP, can be

distinguished between to-infinitives S[to]\NP, or past participles in passive S[pss]\NP.

A complete list of features can be found in Hockenmaier and Steedman (2005).

Combinatory and Type-changing Rules. CCGbank uses the standard CCG com-

binatory rules described in §2.1 including application, composition, coordination and

type-raising. There are also so-called type-changing rules which do not correspond to

CCG combinatory rules. A very common such rule changes a noun into a noun phrase,

N⇒ NP but it is also common to change verb phrases of any type into modifiers, fol-

lowing the schemes Y ⇒ X/X and Y ⇒ X\X . There are also binary type-changing

rules which treat commas as coordinations following the schema , X ⇒ X\X (Clark

and Curran, 2007), and rules dealing with punctuation: , NP⇒ NP.

Corpus-split. The corpus is split into different sections. Following past work (Hock-

enmaier, 2003a; Clark and Curran, 2007), we used sections 02-21 for training, section

00 for development and section 23 for testing. Table 3.1 gives some statistics for this
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split of CCGbank. For each sentence the corpus provides a normal-form derivation, a

predicate-argument structure (see §2.1.2), a set of supertags and a set of POS-tags. We

will refer to data from the corpus as gold-standard or as ground truth.

The training data contains 1,286 different lexical categories. The expected number

of lexical categories per token is 19.2, however some words are observed with a very

high number lexical categories, e.g., the word as was assigned 130 different lexical

categories (Hockenmaier and Steedman, 2007).

3.2 Evaluation

The previous section described the experimental data we use to evaluate the accuracy

and speed of various parsing models in the following chapters. In this section we

describe the metrics for measuring accuracy and the setup for measuring parsing times.

3.2.1 Accuracy Measures

The accuracy of our models has been evaluated in terms of predicate-argument struc-

tures (§2.1.2) recovery. This evaluation method follows previous work in CCG parsing

(Hockenmaier, 2003a; Clark and Curran, 2007) and allows for easy comparison with

other results.

F-measure, Precision and Recall. Accuracy is measured in terms of precision, recall

and F-measure, or F1, over predicate-argument relations.1 Given gold-standard depen-

dencies y and dependencies output by a parser y′, each dependency being a variable-

sized set of predicate-argument relations, we can compute precision P(y,y′) and recall

R(y,y′) as:

P(y,y′) =
|y∩ y′|
|y′| (3.1)

R(y,y′) =
|y∩ y′|
|y| (3.2)

where |y∩ y′| is the number of correctly identified dependencies, |y′| is the number

of dependencies in the proposed output, and |y| is the number of dependencies in the

gold-standard.

Our aim is to achieve high precision, meaning that the returned dependencies are

mostly correct, as well as high recall, meaning that we return most of the desired

1We use accuracy as a general term to refer to the performance on the test and development sets,
which is measured using a range of metrics such as F1, precision and recall.
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dependencies. One can optimise for either precision or recall at the expense of the

other measure. However, in most applications we would like to optimise both equally

and this can be measured with F1:

F1(y,y′) =
2PR

P+R
=

2|y∩ y′|
|y|+ |y′| (3.3)

F-measure is the harmonic mean between precision and recall and is also referred to as

F-score.

Sometimes parsers cannot produce an analysis for a given sentence which de-

creases its coverage, the ratio of sentences for which an analysis could be returned.

Unless otherwise mentioned, the accuracy measures reported in this thesis are only

over sentences for which a parse could be returned.

Labelled and Unlabelled Accuracy. We will evaluate accuracy using both labelled

and unlabelled versions of precision, recall and F-measure. Labelled accuracy regards

a predicate-argument relation only as correct if all fields in the relation match the gold-

standard, that is, the lexical category, the argument slot and both head words (see

§2.1.2). Unlabelled measures ignore the lexical category and the argument slot and

therefore only evaluate head-argument dependencies.

Gold and Auto POS Tags. Previous work on CCG parsing and supertagging has per-

formed most experiments using both gold-standard and automatically assigned POS-

tags as input to their systems (Hockenmaier, 2003a; Clark and Curran, 2007). To make

our results readily comparable, we also report results in both settings. For the latter we

used the C&C POS tagger to assign POS-tags (Curran et al., 2006).

Exact-match and Supertagging Accuracy. Exact-match refers to the ratio of sen-

tences for which the entire predicate-argument structure, that is all dependencies, match

the gold-standard. We will use this measure in our final results presented in Chapter 6.

Supertagging accuracy is the ratio of correct supertags assigned to the words in a sen-

tence. It can be used to measure the accuracy of supertagging as well as parsing.

3.2.2 Timing

We measure parsing efficiency in terms of the time taken to parse the test and develop-

ment portions of CCGbank. The times reported are the absolute wall clock times on a

2.5 GHz Intel Xeon machine with 32 GB memory. All results were averaged over ten

runs to provide reliable results. The timings include only the core parsing times and

exclude all preparatory steps such as loading of the model.
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3.3 Baseline Models

We now turn to the baseline models used in the experiments. First, we detail the

supertagger models, their settings and feature-sets (§3.3.1). Next, we describe the

setup of the generative parser we experimented with in Chapter 4 (§3.3.2). Finally, in

§3.3.3 we present the configuration of the discriminative parser that forms the basis of

our integrated supertagging and parsing model (Chapter 5); we also used the parser for

experimentation with a novel training technique (Chapter 6).

3.3.1 Supertagging

This section describes two supertaggers based on slightly different models: The C&C

supertagger (Clark, 2002; Curran et al., 2006) and a reimplementation by Dennis

Mehay, which is part of the OpenCCG project.2 Experiments in this thesis are usually

based on the idea of combining parsers and supertaggers. In the following chapters,

we use two different parsers and in order to maintain coherent code-bases, we decided

to combine each parser with a supertagger written in the same programming language:

First, we use the C&C supertagger together with the C&C parser (Clark and Curran,

2007; §3.3.3), both written in C++; this setup is used in Chapters 5 and 6.3 Second, the

OpenCCG supertagger was coupled with the parser of Hockenmaier (2003b; §3.3.2),

both implemented in Java; this setup is used in Chapter 4.

The C&C supertagger implements a conditional Maximum Entropy model. The

probability of a supertag ti given a local context xi containing ti is as follows:

p(ti|xi) =
exp
{

θT f (xi, ti)
}

∑t ′ exp
{

θT f (xi, t ′)
} (3.4)

Similar to before f (xi, ti) is a function that returns a vector indicating which features

apply to xi and ti; and θ is a vector of weights of the same length. Features include

previous supertag assignments and word-based features within a local window of ti;

all encoded in the local context xi, see below for a detailed list. During decoding, the

tagger selects supertag-sequences based on the marginal probabilities of the supertags.

The marginals are computed with the forward algorithm and the backward algorithm

(§2.3.5, Curran et al. 2006).

2Dennis Mehay has not published his supertagger but it is part of the OpenCCG project (http:
//sourceforge.net/projects/openccg).

3The C&C tools can be obtained from http://svn.ask.it.usyd.edu.au/trac/candc/wiki

http://sourceforge.net/projects/openccg
http://sourceforge.net/projects/openccg
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The OpenCCG supertagger also uses a conditional Maximum Entropy model but

only to model features over local contexts. It relies on a separate sequence model for

transition probabilities. The Maximum Entropy model is interpolated with a traditional

multinomial, p(ti|ti−1), an n-gram model over supertags (McCallum et al., 2001):

p(ti|xi) = p(ti|ti−1)
exp
{

θT f (xi, ti)
}

∑t ′ exp
{

θT f (xi, t ′)
} (3.5)

The two supertaggers share many similarities such as identical feature-sets and

tag-sets, despite slightly different underlying models. While the two taggers have dif-

ferent models, it is important to note that we do not directly compare the two different

supertaggers in any experiments.

Features. The features are based both on words wi and POS-tags ti within a fixed

window of five words; this is at most two positions before and after the current word.

The following templates were used to extract the features:

• Unigrams of words: wi−2, wi−1, wi, wi+1, wi+2

• Unigrams of POS-tags: ti−2, ti−1, ti, ti+1, ti+2

• Bigrams of POS-tags: 〈ti−2, ti−1〉, 〈ti−1, ti〉, 〈ti−1, ti+1〉, 〈ti, ti+1〉, 〈ti+1, ti+2〉

• Unigrams and Bigrams over past supertagging decisions: ci−2, ci−1, 〈ci−2,ci−1〉
(Only C&C supertagger)

Extracting features based on these templates from the training portion of CCGbank

results in a total of 929,552 instances for C&C. The model does not apply a frequency

cutoff and therefore uses all of the features.

Category-set. We only model lexical categories which were observed at least 10

times in the training data. This simplifies the tagging problem by reducing the number

of possible outcomes for the classifier from 1286 to 425. Subsequent work using the

tagger with a parser (Clark and Curran, 2003, 2004a,b, 2007) demonstrates that this

has negligible effect on coverage.

Beam Search. The beam size parameter β bounds the number of lexical categories

considered for each word during training and testing. Supertags whose probability is

lower than β times the probability of the best tag are removed. For the C&C supertag-

ger we also use a forward-beam-ratio parameter ς set to 0.1. It completely removes

supertags from the search graph during inference if the forward probability is ς× β

worse than the probability of the best tag.
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Expansion probability p(exp|P) exp ∈ {leaf, unary, left, right}
Head probability p(H|P,exp) H is the head daughter

Non-head probability p(S|P,exp,H) S is the non-head daughter

Lexical probability p(w|P)

Table 3.2: Structural probabilities of the PCFG model. H, P, and S are categories, and w

is a word.

Tagging Dictionary. The supertagger uses a tagging dictionary which contains, for

each word, the set of categories the word has been seen with in the training data. If

a word appears at least k times, the supertagger considers only categories from the

dictionary for this word. Otherwise, a POS dictionary is consulted which lists all

supertags for the POS-tag of the word.

Multi-tagging. The supertagger can predict multiple supertags per word. It returns

for each word all categories whose marginal is within the beam β relative to the tag

with the best marginal.

3.3.2 Generative Parsing

The parser of Hockenmaier (2001, 2003a,b) implements several different generative

parsing models, we focus on two of them: First, PCFGModel treats the grammar as

a simple binary context-free grammar without any internal structure. Second, HWDep

models bilexical dependencies and is the most accurate model of their work. Each

model incorporates a different interesting linguistic feature, and each has a generative

story which completely describes the process of generating a parse tree and a sentence.

PCFG Model. The basic PCFG model has a very simple generative process: Given a

parent category P, choose an expansion exp of P with expansion probability p(exp|P),
where exp can be either a leaf, for generating lexical categories, or unary for unary ex-

pansions such as type-raising, or left for binary trees with the head daughter on the

left, or right, for binary trees with the head daughter on the right. If P is a leaf node,

then generate its head word with lexical probability p(w|P). Otherwise, generate its

head daughter category H with head probability p(H|P,exp) and its non-head daugh-

ter category with non-head probability p(S|P,exp,H). Table 3.2 summarises these

structural probabilities.
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Expansion probability p(exp|P,cP#wP) exp ∈ {leaf, unary, left, right}
Head probability p(H|P,exp,cP#wP) H is the head daughter

Non-head probability p(S|P,exp,H#cP#wP) S is the non-head daughter

Lexcat probability p(cS|S#P,H,S) p(cTOP|P=TOP)

Head word probability p(wS|cS#P,H,S,wP) p(wTOP|cTOP)

Table 3.3: Headword dependency model factorisation, backoff levels are denoted by

’#’ between conditioning variables: A#B#C indicates that p̂(. . . |A,B,C) is interpolated

with p̂(. . . |A,B), which is an interpolation of p̂(. . . |A,B) and p̂(. . . |A). Variables cP and

wP represent, respectively, the head lexical category and the head word of category P.

Extensions of this model use more features which are generated probabilistically.

However, additional features mean more specific probability distributions for which

some events may not have been observed in the training data. A standard technique to

deal with this is to smooth the probability distributions such that they assign probabil-

ities to unseen events. Hockenmaier uses a linear interpolation of probability distribu-

tions. The idea is to combine specific distributions with many conditioning variables

with less specific distributions based on fewer variables (Hockenmaier, 2003a), e.g.,

p(y|x1 . . .xi . . .xn) = λp(y|x1 . . .xi . . .xn)+(1−λ)p(y|x1 . . .xi) s.t.(0≤ λ≤ 1) (3.6)

where λ is a smoothing parameter, not a feature weight.

HWDep. Hockenmaier (2003b) describes a number of extensions to the PCFG model.

The most noteworthy are the lexical category model LexCat and the head word de-

pendency model HWDep. The LexCat model changes the generative story so that the

parent node first generates a lexical category followed by the subtree rooted at P; in

subsequent steps the lexical category is then used as additional conditioning context.

The HWDep model follows a similar idea but captures word-word dependencies: It first

generates a head word and then the lexical category, followed by the subtree. The

generation of the subtree rooted at P is then based both on the head word as well as

the lexical category. This is the best performing model presented in their work and its

structural probabilities are given in Table 3.3.

Beam Search. In practice it is usually intractable to represent all parses for long

sentences, even with efficient dynamic programming algorithms such as CKY (§2.3.4).

It is therefore common to remove or prune low probability items during the search in
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the hope that they will not lead to the best solution. This reduces memory requirements

and increases speed but comes at the cost of exactness. Pruning is parameterised by

a beam parameter 0 < b ≤ 1 which removes items whose probability is less than b-

times the probability of the best comparable item; the best-item covers the same span

of words and is in the same cell of the parsing chart. Such a threshold is also known as

a global pruning threshold; we used the default setting of b = 10−4.

Estimation. The models are estimated from training data where every sentence is

annotated with a CCG derivation. The probability distributions of each model are

maximum likelihood estimates (§2.3.2) based on frequency counts collected from the

training data. For example, if we want to estimate the expansion probability in PCFG,

for category NP being a leaf, we compute

p̂(exp = leaf |NP) =
f (NP,exp = leaf )

∑e′ f (NP,exp = e′)
=

f (NP,exp = leaf )
f (NP)

(3.7)

where f (NP,exp = leaf ) is the frequency of observing NP as a leaf, while the

denominator is simply the frequency of NP regardless of the expansion type.

Rare and Unknown Words. One of the problems with the parser of Hockenmaier is

that the lexicon extracted from the training data does not provide good enough cover-

age for parsing the test-set. Parsers relying on a supertagger (Clark and Curran, 2007)

transfer the burden of dealing with rare or unknown words to the tagger. The parser

of Hockenmaier does not use a supertagger by default but it adopts a similar approach

as the taggers described in §3.3.3: Every word falling below a frequency threshold is

replaced by its POS tag. The intuition is that there are richer statistics for a POS tag

than for a low-frequency word. The frequencies are computed on the training data and

the threshold is tuned on held-out data. For all experiments reported, the frequency

threshold was set to 30. During test time an unknown word is simply replaced by its

POS tag and only supertags seen together with the POS tag are considered.

Grammar Implementation. The grammar is constructed based on the normal-form

derivations in the training portion of CCGbank. The parser does not allow any cat-

egories to combine which have not been seen to combine in the training data. This

restriction makes the grammar implemented by the parser effectively weakly context-

free (Fowler and Penn, 2010).
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3.3.3 Discriminative Parsing

This section describes the configuration of the Conditional Random Field (CRF) parser

of Clark and Curran (2003, 2004a, 2007) which is part of the C&C tools. This CCG

parser implements two different parsing models, the first is defined over dependency

structures and the second over individual derivations. We will detail each of the mod-

els, their feature-sets, the way the grammar is implemented, a combined hybrid model,

the various beam settings as well as the integration of the supertagger.

Log-Linear Form. Both models define the probability of a parse y and a sentence x

in the usual log-linear form:

p(y|x) = 1
Z

exp
{

θ
T f (x,y)

}
(3.8)

However, the model is globally normalised, meaning that the partition function Z =

∑y′ exp
{

θT f (x,y′)
}

is computed in terms of all possible parses y′ for the sentence.

The two models use different notions of what a parse constitutes and we will discuss

each of them.

Dependency Model. This model defines a parse as a derivation-dependency structure

pair 〈d,y〉. The probability of a dependency structure y (§2.1.2) is defined as the sum

of the probability of all derivations d leading to y:

p(y|x) = ∑
d∈∆(y)

p(〈d,y〉|x) (3.9)

where ∆(y) is the set of all derivations leading to dependency structure y. An alternative

approach is to directly model dependencies as in Hockenmaier (2003b) and Clark et al.

(2002). However, modelling both derivations and predicate-argument dependencies

has the advantage that we can capture useful information within derivations to infer

good dependency structures (Clark and Curran, 2007).

Both the dependency model and the normal-form model use a Gaussian prior term

G(θ) to avoid overfitting. The training data D = {〈x(i),y(i)〉}m
i=1 for the dependency

model is a set of sentences paired with a predicate-argument structure. The conditional
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log-likelihood `(D;θ)′ is as follows:

`′(D;θ) = `(D;θ)−G(θ) (3.10)

`′(D;θ) = log
m

∏
i=1

pθ(y(i)|x(i))− ∑
λk∈θ

λ2
k

2σ2

`′(D;θ) =
m

∑
i=1

log
∑d∈∆(y(i)) exp{θT f (x(i),〈d,y(i)〉)}

∑〈d′,y′〉∈Ω(x(i)) exp{θT f (x(i),〈d′,y′〉)} − ∑
λk∈θ

λ2
k

2σ2 (3.11)

`′(D;θ) =
m

∑
i=1

log ∑
d∈∆(y(i))

exp{θT f (x(i),〈d,y(i)〉)}

−
m

∑
i=1

log ∑
〈d′,y′〉∈Ω(x(i))

exp{θT f (x(i),〈d′,y′〉)}− ∑
λk∈θ

λ2
k

2σ2 (3.12)

and the partial gradients are given by

∂

∂λk
=

m

∑
i=1

∑
d∈∆(y(i))

exp{θT f (x(i),〈d,y(i)〉)}
∑d′∈∆(y(i)) exp{θT f (x(i),〈d′,y(i)〉)}hk(x(i),〈d,y(i)〉) (3.13)

−
m

∑
i=1

∑
〈d,y〉∈Ω(x(i))

exp{θT f (x(i),〈d,y〉)}
∑〈d′,y′〉∈Ω(x(i)) exp{θT f (x(i),〈d′,y′〉)}hk(x(i),〈d,y〉)−

λk

σ2
k

where the Gaussian is parameterised by σ, which is the same for all feature-weights

λk, and hk(x,y) is a feature-function returning the frequency of feature k for parse y

of sentence x, and Ω(x) is the set of all dependency structures and derivations for x.

The first term in the gradient (Equation 3.13) is the empirical expectation computed

over the derivations that lead to a particular gold-standard dependency structure y; the

second term computes the model expectations over all derivations for each sentence.

Normal-Form Model. This model defines a parse as a single derivation. Computa-

tionally, this is much less demanding than the dependency model which defines parses

as sums over derivations. The training data D = {〈x(i),d(i)〉}m
i=1 consists of sentences x

paired with normal-form derivations d. The objective function and the partial gradients

are

`′(D;θ) = `(D;θ)−G(θ) (3.14)

= log
m

∏
i=1

pθ(d(i)|x(i))− ∑
λk∈θ

λ2
k

2σ2

∂

∂λk
=

m

∑
i=1

hk(x(i),d(i)) (3.15)

−
m

∑
i=1

∑
d∈ρ(x(i))

exp{λkhk(x(i),d)}
∑d′∈ρ(x(i)) exp{λkhk(x(i),d′)}

− λk

σ2
k
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where d(i) is the gold-standard normal-form derivation for sentence x(i) and ρ(x) is

the set of all derivations for sentence x. The empirical expectations are feature-counts

over a single derivation-sentence pair and the model expectations are computed over

all derivations for a sentence.

Viterbi and Minimum-Risk Decoding. Decoding with the normal-form model is

straightforward since we can simply use the Viterbi algorithm (see §2.3.3) to recover

the single-best derivation for a given sentence. However, for the dependency model we

want to recover the highest scoring dependency structure, which is defined over sums

of derivations, and computing these sums can be very expensive. Clark and Curran

(2007) propose a minimum-risk decoding algorithm (§2.3.3) which recovers parses

that maximise the expected labelled recall rate. Their algorithm is a dependency-

variant of the algorithm developed by Goodman (1996). We outline the used algorithm

briefly: A parse y is a set of dependencies τ; the parse ŷ which maximises the expected

recall rate is defined as

ŷ = argmax
y

E
yi∼P(yi|x)

[|y∩ yi|] (3.16)

The expected recall rate maximises the unnormalised expected recall which is why it

is referred to as recall rate. Further, we can rewrite the expected recall rate for y as a

sum over the individual dependencies in y:

ŷ = argmax
y

∑
yi

P(yi|x)|y∩ yi| (3.17)

= argmax
y

∑
yi

P(yi|x)∑
τ∈y

1 if τ ∈ yi (3.18)

= argmax
y

∑
τ∈y

∑
y′|τ∈y′

P(y′|x) (3.19)

The final expression is the sum of the expectations of all dependencies τ ∈ y. We can

use the inside probability of a dependency structure I(τ) and its outside probability

O(τ) to efficiently compute these sums. The maximum expected recall rate parse is

given as:

ŷ = argmax
y

∑
τ∈y

1
Z

I(τ)O(τ) (3.20)

Features. The features of the normal-form model are defined over local sub-trees

of the parent and child categories in a derivation, whereas features of the dependency

model are defined over predicate-argument dependencies. The two models have a

number of features in common, such as features over both lexical categories and words,
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Feature type Example

LexCat + Word NP + dog

LexCat + POS NP + NN

RootCat S[dcl]

RootCat + Word S[dcl] + like

RootCat + POS S[dcl] + VBD

Rule NP S[dcl]\NP⇒ S[dcl]

Rule + Word NP S[dcl]\NP⇒ S[dcl] + liked

Rule + POS NP S[dcl]\NP⇒ S[dcl] + VBD

Table 3.4: Features common to both the normal-form model and the dependency model

of Clark and Curran (2007).

or POS; features over the root category, extended by the head word of the root category

and further generalised by the POS of the head word; there are also features over

local rule sub-trees, extended by head words and the POS of head words; Table 3.4

summarises them and gives examples.

The dependency model uses predicate-argument relations, discussed in §2.1.2, as

features. The relations used by the dependency model contain an extra field to indicate

if the dependency is non-local. For example, the sentence The equities that Vinken

listed has a long-range dependency between equities and listed:

〈listed,(S\NP1)/NP2,2,equities,(NP\NP)/(S[dcl]/NP)〉 (3.21)

This example dependency has the lexical category for that in the last field, which medi-

ated the long-range dependency. The Word-Word dependency features are generalised

by POS to yield features for Word-POS, POS-Word, and POS-POS dependencies; Ta-

ble 3.5 shows some examples. Each variant is further extended by either distance

information between the dependent words, which counts the number of intervening

words, indicators for the presence of punctuation marks, and indicators on the pres-

ence of verbs; the possible distance values are 0, 1, 2, and more (> 2). The extended

features do not include argument words, and similarly to before, there are variations

which are generalised by POS-tags.

The normal-form model defines features in terms of the categories and head words

of local subtrees, see Figure 3.6. These features are generalised to POS and variants
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Feature type Example

Word-Word 〈 listed, (S\NP1)/NP2, 2, equity, (NP\NP)/(S[dcl]/NP)〉
Word-POS 〈 listed, (S\NP1)/NP2, 2, NN, (NP\NP)/(S[dcl]/NP)〉
POS-Word 〈 VBD, (S\NP1)/NP2, 2, equity, (NP\NP)/(S[dcl]/NP)〉
POS-POS 〈 VBD, (S\NP1)/NP2, 2, NN, (NP\NP)/(S[dcl]/NP)〉
Word + Distance (words) 〈 listed, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + > 2

Word + Distance (punct) 〈 listed, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 0

Word + Distance (verbs) 〈 listed, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 0

POS + Distance (words) 〈 VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + > 2

POS + Distance (punct) 〈 VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 0

POS + Distance (verbs) 〈 VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 0

Table 3.5: Features specific to the dependency model of Clark and Curran (2007).

with distance information similar to the dependency model.

Features are extracted from the training data and a frequency cutoff of two is ap-

plied, meaning that that only features observed at least twice are selected for the actual

model. This results in 482,578 features for the normal-form model and 1,112,846

features for the dependency model.

Grammar Implementation. The parser models the same set of lexical categories as

the supertaggers described before (§3.3.1). That is all supertags with a frequency of

at least 10 in the training data, giving 425 lexical categories. The normal-form model,

and the hybrid-dependency model described below, use two additional restrictions:

First, the Eisner constraints (Eisner, 1996), discussed in §2.1.3, prevent constituents

which are the outcome of forward composition to serve as the primary (or left) functor

for another forward composition or application. Similarly, any constituent that is the

result of backward composition cannot serve as the primary (right) functor for another

backward composition or application. Second, only categories which have been seen

to combine in the training data are allowed to combine during test time. Clark and

Curran (2007) report that these restrictions have no detrimental effects on accuracy

nor coverage. Neither of the constraints guarantees normal-form derivations but they

eliminate enough derivations to vastly increase parsing speed. The constraints are used

for both training and testing.

The grammar of the parser is carefully engineered to strike a good balance between
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Feature type Example

Word-Word 〈Mark, NP S[dcl]\NP⇒ S[dcl], proved 〉
Word-POS 〈Mark, NP S[dcl]\NP⇒ S[dcl], VBD 〉
POS-Word 〈 NN, NP S[dcl]\NP⇒ S[dcl], proved 〉
POS-POS 〈 NN, NP S[dcl]\NP⇒ S[dcl], VBD 〉
Word + Distance(words) 〈 proved, NP S[dcl]\NP⇒ S[dcl] 〉 + > 2

Word + Distance(punct) 〈 proved, NP S[dcl]\NP⇒ S[dcl] 〉 + 0

Word + Distance(verbs) 〈 proved, NP S[dcl]\NP⇒ S[dcl] 〉 + 0

POS + Distance(words) 〈 VBD, NP S[dcl]\NP⇒ S[dcl] 〉 + > 2

POS + Distance(punct) 〈 VBD, NP S[dcl]\NP⇒ S[dcl] 〉 + 0

POS + Distance(verbs) 〈 VBD, NP S[dcl]\NP⇒ S[dcl] 〉 + 0

Table 3.6: Features specific to the normal-form model of Clark and Curran (2007).

accuracy and coverage. Appendix A of Clark and Curran (2007) lists a range of design

decisions. For example, type-raising is implemented as a set of only eight unary rules

which are applied every time one of the categories NP, PP and S[ad j]\NP are created.

Similarly, only a subset of the type-changing rules occurring in CCGbank were imple-

mented. This results in a very fast parser but it is at the same time language-specific.

While the restrictions make the parser very efficient, it has to be noted that their

use makes the grammar effectively strongly context-free. This means it is possible

to construct an equivalent context-free grammar, which can model the same analysis

as the CCG grammar. Two restrictions are equally responsible for the implemented

grammar being strongly context-free (Fowler and Penn, 2010): Allowing only a finite-

set of categories, and suppressing the combination of categories which have not been

seen to combine in the training data. The parser allows the removal of these restrictions

but we did not do this in our experiments.

Used Model: Hybrid Dependency Model. Estimation of the dependency model

requires vast amounts of memory since it does not use the grammar restrictions de-

scribed above. To make estimation possible, Clark and Curran (2007) introduce a

hybrid model which is the dependency model with the same restrictions imposed on

the normal-form model i.e. the Eisner normal-form derivations and allowing only ob-

served category combinations. This model consumes considerably less memory than

the dependency model and achieves the best performance presented in Clark and Cur-

ran (2007). We use it in Chapters 5 and 6.
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Beam Search and Maximum Chart Size. The parser implements a global beam-

threshold which was recently extended to speed up the parser even further (Clark et al.,

2009). However, we did not use it for our experiments, following previous work (Clark

and Curran, 2007) which solely relied on the supertagger to make search efficient.

The maximum chart size parameter limits the number of items in the parser chart.

We follow Clark and Curran (2007) and set it to 1,000,000 for testing and 300,000

for estimation. If this limit is exceeded, then the best sentence-spanning analysis is

returned, or if there is none, a parse failure is reported. However, when the parser is

used in adaptive supertagging mode, then the next iteration will be initiated.

Supertagger-Integration. The parser is tightly integrated with a supertagger which

prunes the set of possible lexical categories for each word (Clark and Curran, 2004b).

We use the C&C supertagger described in §3.3.1 with this parser. The supertagger is

used both during training and test time. The test-time settings are identical to the ones

used by Clark and Curran (2004b) and we will detail them in Chapter 5.

3.4 Estimation

This section covers the hyper-parameters and settings used during estimation of the

discriminative parsing model of Clark and Curran (2007); its test time configuration

was discussed in §3.3.3. We do not describe the training process for the generative

parsing models of Hockenmaier (2003a) since we used it exclusively for decoding;

details about the training process can be found in their work.

Training Beams. The estimation methods we used require repeated calculation of

expectations over the entire training corpus, potentially hundreds of times. Computing

model expectations over parses entails the construction of all possible derivations for

all sentences in the training data. Moreover, since expectations are repeatedly com-

puted, it is usually necessary to keep the derivations in memory for efficiency.

However, the memory requirements of all possible derivations is usually prohibitively

large, even for simple sentences. In order to make estimation feasible we use two prun-

ing methods: We limit the maximum number of chart items per sentence to 300,000

and use the supertagger (Clark, 2002; Curran et al., 2006) to prune the set of lexical

categories. The beam step function for the supertagger starts with a wide beam and

narrows it at each iteration if the maximum chart size is exceeded.

Figure 3.7 shows the beam step function we used (Training), as well as an al-

ternative presented in previous work (Clark and Curran, 2003, 2004a,b, 2007). Our
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Condition Parameter Iteration 1 2 3 4 5 6 7

Training
β 0.001 0.001 0.0045 0.0055 0.01 0.05 0.1

k 150 20 20 20 20 20 20

C&C ’07
β 0.0045 0.0055 0.01 0.05 0.1

k 20 20 20 20 20

Table 3.7: Beam step function used for training. Parameter β is a beam threshold while

k bounds the use of a part-of-speech tag dictionary which is used for words seen less

than k times (see §3.3.1).

Condition items per sent total items

Training 16,116 605,885,365

C&C ’07 4,606 172,793,049

Table 3.8: Size of training forests measured in number of items. We quote the average

per sentence and the total number of items, both for our beam settings as well as the

settings used in previous work (Clark and Curran, 2007).

beams are less aggressive than previous work since our experiments are more recent

and we therefore had larger computing resources available. However, we found that

the larger beams had only a marginal effect on accuracy: The new beams increased

labelled F-measure from 87.24% to only 87.38% on the development set and from

87.64% to 87.73% on the test set. Despite negligible effect on accuracy, we find that

the beam settings have a significant effect on the size of the forests generated for the

training corpus, as shown in Table 3.8. Our beam step function more than triples the

size of the training forests, which results in very high memory requirements of over

100 gigabytes of main memory when loaded.

Training Data Coverage. Expectation-based training requires that each forest con-

tains the gold-standard parse; for the normal-form model this is the treebank deriva-

tion, and for the dependency-model we require at least one derivation to produce the

gold-standard predicate-argument structure. The utilisation of the training data is about

91.5% for both models since the gold-standard parse cannot be recovered for all sen-

tences. There are several reasons why: First, the parser cannot produce all rule combi-
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nations occurring in CCGbank, because some rules do not correspond to instances of

CCG rule combinations, and others are rare punctuation handling rules which are not

modelled for efficiency reasons (Clark and Curran, 2007). Second, the beam settings

above may result in the loss of the gold-standard parse and therefore a decrease in the

number of sentences available for training. However, we found that the use of our less

aggressive beam settings made no difference which suggests that loosening the beam

settings will not alleviate the problem.

One issue arising with the supertagger is that it may not always find the supertag

required for the gold-standard parse. In these cases, we simply add the gold-standard

supertag to the chart, following Clark and Curran (2007). Adding gold-supertags is

required for 5.6% of training sentences.4

Parallel Estimation. As previously discussed, we need to keep all training forests

in memory which is impractical on a single machine. To solve this problem we used

the MPI architecture developed for the C&C parser by Clark and Curran (2007) to

distribute the training forests across a cluster of machines. This allows the parallel

computation of expectations. A master machine aggregates the computed expectations

and takes the gradient-step, upon which the new parameters are distributed to compute

the next set of expectations. We used the MPICH2 implementation (Gropp et al., 1999)

to manage the communication between machines.

L-BFGS. We use the Limited-memory Broyden–Fletcher-Goldfarb-Shanno method

(L-BFGS) for training the feature-weights, an iterative numerical optimisation algo-

rithm. At each iteration it requires a function value, the conditional log-likelihood,

and the first and second order partial derivatives of this function in order to choose

the next gradient step direction. The second order partial derivatives are approximated

using the previous function evaluations and the corresponding first order derivations.

This approximation avoids full computation of the second order partial derivatives, full

computation is usually intractable. L-BFGS retains only the last few function evalua-

tions, which is why it limits memory.

We used the implementation that is part of the C&C tools (Clark and Curran, 2007).

Training with L-BFGS requires repeated evaluation of the conditional log-likelihood

4The data utilisation figure of 91.5% does already include adding gold-supertags.
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function, as defined in §3.3.3 and reproduced below:

`′(D;θ) = `(D;θ)−G(θ) (3.22)

`′(D;θ) = log
m

∏
i=1

pθ(y(i)|x(i))− ∑
λk∈θ

λ2
k

2σ2 (3.23)

The Gaussian prior term G(θ) has a single parameter which we set to σ= 0.6 following

Clark and Curran (2007). L-BFGS converges if the percentage change in the objective

function is less than 0.0001% in any iteration and we keep a history of the last ten

evaluations.

SGD. L-BFGS examines all training examples before taking a step, whereas Stochas-

tic Gradient Descent (SGD) uses only a sample of the training data to compute gradi-

ents. The underlying idea is that examining the entire training set for a single step may

be wasteful, as it may contain much duplicate information. Clearly, the steps made by

L-BFGS may be better but it can make far fewer than SGD in the same time (Sutton

and McCallum, 2011). The hope is that making many low quality steps may be faster

and as good as taking a few very accurate steps. The gradients used in SGD are based

on samples of the training data Db of size b such that

E

[
B

∑
i=1

`(D(i)
b ;θ)

]
= `(D;θ) (3.24)

where B is the number of samples drawn from the training data, possibly with replace-

ment. Note that any priors must be scaled down by a factor of b/|D|. The weight

update used in SGD is

θq+1 = θq−µq∇`(D(i)
b ;θq) (3.25)

where µq is a temperature parameter that is adjusted according to the following sched-

ule:

µq = µ0
ζ

ζ+q
(3.26)

where µ0 is the initial temperature and ζ determines how quickly µ changes over it-

erations q = 1, . . . ,Q. The main disadvantage of SGD is that it requires the tuning of

various settings, whose optimal value often depends on the particular task. There are

many settings which can substantially influence performance such as the initial tem-

perature µ0, the speed by which the temperature changes over time ζ, the batch size b,

or the number of training iterations Q (Sutton and McCallum, 2011).

For our experiments we used the parameter settings proposed by Finkel et al. (2008)

for their context-free grammar parser, which generalised well to our models. We ran
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SGD for ten passes through the training data. Each sample was of size b = 30, drawn

with replacement. The initial temperature for the update schedule was set to µ0 = 0.1

and we set ζ, the parameter controlling the decay of the temperature µ, so that µ would

half after exactly five passes.

3.5 Conclusions

This chapter outlined our experimental setup to evaluate the accuracy and efficiency

of CCG parsing. The following chapters present a novel integrated supertagging and

parsing model and the evaluation methods discussed here are used to measure its ac-

curacy and efficiency. Specifically, we have covered the following:

• CCGbank, the treebank we use to train and evaluate our models.

• Evaluation metrics to measure the accuracy of CCG parsers and the setup to

measure efficiency in terms of CPU time.

• The models and the configuration of the parsers and supertaggers used in this

thesis.

• The estimation of a discriminative CCG parsing model on which our integrated

model is based.

The following chapters present an analysis of supertagging, the baseline for the inte-

grated supertagging and parsing model, as well as a training method to find accurate

parsing models.



Chapter 4

Efficient Search for CCG Parsing

This chapter deals with efficient parsing of Combinatorial Categorial Grammar (CCG;

Steedman, 2000; §2.1). Parsing with CCG can be much harder than with Penn Treebank-

style context-free grammars, since the number of non-terminal categories is generally

much larger, leading to higher parsing complexity (§2.3.4). Where a typical Penn Tree-

bank grammar may have fewer than 100 non-terminals, we found that a CCG grammar

derived from CCGbank contained nearly 1600. The same grammar assigns an average

of nearly 20 lexical categories per word, resulting in a very large space of possible

derivations (Hockenmaier and Steedman, 2007).

The most successful strategy to date for efficient parsing of CCG is adaptive su-

pertagging (§2.2.2) which is based on pruning lexical categories with a supertagger.

However, pruning means approximate search: if a lexical category used by the high-

est probability derivation is pruned, the parser will not find that derivation. Since the

supertagger enforces no grammaticality constraints it may even prefer a sequence of

lexical categories that cannot be combined into any derivation. Empirically, we show

that supertagging improves efficiency by an order of magnitude, but the tradeoff is a

significant loss in accuracy (§4.2).

Can we improve on this tradeoff? The line of investigation we pursue in this chap-

ter is to consider more efficient exact algorithms for Viterbi-parse selection (§2.3.3).

In particular, we test different variants of the classical A* algorithm (Hart et al. 1968;

§4.1), which has met with success in Penn Treebank parsing with context-free gram-

mars (Klein and Manning, 2003; Pauls and Klein, 2009a,b). We can substitute A* for

standard CKY (§2.3.4) on either the unpruned set of lexical categories, or the pruned

set resulting from supertagging. Our empirical results show that on the unpruned set

of lexical categories, heuristics employed for context-free grammars show substantial

67
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speedups in hardware-independent metrics of parser effort (§4.3). To understand how

A* compares to the CKY baseline, we conduct a carefully controlled set of timing

experiments. Although our results show that improvements on hardware-independent

metrics do not always translate into improvements in CPU time due to increased pro-

cessing costs that are hidden by these metrics, they also show that when the lexical

categories are pruned using the output of a supertagger, then we can still improve effi-

ciency by 15% with A* techniques (§4.4).

4.1 A* Parsing

Irrespective of whether lexical categories are pruned in advance using the output of a

supertagger, most CCG parsers we are aware of use some variant of the CKY algo-

rithm.1 Although CKY is easy to implement, it is exhaustive: it explores all possible

analyses of all possible spans, irrespective of whether such analyses are likely to be

part of the highest-probability derivation. Hence it seems natural to consider exact

algorithms that are more efficient than CKY.

A* is an agenda-based best-first graph search algorithm which finds the lowest cost

parse exactly without necessarily traversing the entire search space (Klein and Man-

ning, 2003). Both CKY and A* search the same hypergraph defined by the deductive

system described in §2.3.4. However, A* does not process items in topological order

using a simple control loop such as CKY, or the inside algorithm. Instead, it processes

promising items before less-likely ones. The ensuing description of A* parsing follows

Klein and Manning (2003).

An A* parser maintains two data-structures: An agenda of newly-formed items

waiting to be processed and, similar to CKY, a chart data structure to record items for

which the highest-probability parse has already been found. The main control loop

removes the item with highest probability from the agenda and combines it with items

already in the chart to build new items. For example, if item S\NP1,3 were removed

from the agenda and item NP0,1 is already in the chart, then item S0,3 would be created,

and added to the agenda, if it is not in the chart already (Figure 4.1).

During parsing we are not only interested if certain items can be built at all, but

also what the highest probability of an item is. We therefore record estimates of item

probabilities and update them as better parses for the item are found. If we find a better

1The recently introduced shift-reduce parser of Zhang and Clark (2011) is a notable exception.
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Agenda

e0
e1
e2
...
ei

Chart

a1 aL

S

Figure 4.1: Illustration of agenda-based parsing. Items ei compete on an agenda to be

put into the chart and to be used in building new items, which are again pushed onto

the agenda.

way to construct an item already on the agenda, then we simply update the estimate;

new items with a worse estimate than previously recorded are simply discarded.

Items on the agenda are processed by their priority: Promising items are explored

first, others can wait on the agenda indefinitely. We would like to assign priorities

which speed up parsing but also guarantee exactness of the recovered parses, meaning

that the first sentence-spanning parse returned is indeed the highest-probability parse.

Exactness is ensured by requiring that for any item e, all items contained in the best

derivation of e get removed from the agenda before e itself. If the item priorities ensure

this ordering, then the items leaving the agenda will carry their correct probabilities.

One way to guarantee a correct ordering is to assign shorter spans higher priority than

longer ones; this priority gives essentially the CKY algorithm but has the disadvantage

of building all items. We will later simulate CKY using this priority.

Formally, we define A* parsing using Viterbi inside items Ī(Ai, j) : w with Viterbi

inside probability w, the weight of the highest-probability inner-derivation for Ai, j dis-

covered so far. As long as an item is on the agenda, it represents the best estimate

of its true probability discovered so far, however, once removed, it does represent the

true probability, given that the pre-conditions for exactness are met. Note that in this

chapter we are only concerned with the recovery of Viterbi parses, i.e., the highest-

probability parse for a sentence, and therefore Ī(Ai, j) does not represent the inside

probability of Ai, j but rather the probability of a single derivation rooted at Ai, j. The

A* parser maintains estimates for the Viterbi inside probabilities and improves them

over time as better analyses for Ai, j are discovered. Priorities p = w⊗ h(Ai, j) for

Viterbi inside items are defined as the product2 of the Viterbi inside probability w and

2Assuming the Viterbi semiring in Table 2.1.
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a1 ai aj+1 aL

ai+1 aj

A

S

A

Ī(Ai,j)

Ō(Ai,j)

Figure 4.2: Illustration of the Viterbi inside and outside probabilities.

a heuristic estimate h(Ai, j) of the Viterbi outside probability. Note that we are not

strictly required to use a heuristic and we could simply use p = w; no heuristic can

also lead to improvements as we show in §4.3.1. Estimates are model-specific and we

consider several variants in our experiments based on the CFG heuristics developed by

Klein and Manning (2003; §4.1.1) and Pauls and Klein (2009; §4.1.2). We also define

Viterbi outside items Ō(Ai, j) to represent the probability of an outer-derivation of Ai, j.

The deductive system to compute Viterbi inside probabilities is identical to the inside

algorithm (Figure 2.17) with the Viterbi semiring (Table 2.1), similarly for Viterbi out-

side probabilities and the outside algorithm (Figure 2.20). Figure 4.2 illustrates Viterbi

inside items and Viterbi outside items.

In order for A* search to be exact we require the heuristic estimates h(Ai, j) to be

both admissible and monotonic. Admissibility means that the heuristic never overes-

timates the true Viterbi outside probability, i.e., the probability to complete the parse.

Monotonicity means that the priority p = w⊗ h(Ai, j) never increases when building

up a parse. If these conditions are met, then we can be sure that the probabilities of

the items popped off the agenda are exact; proof can be found in Klein and Manning

(2002). A* parsing terminates if we pop off the first sentence-spanning Viterbi inside

item Ī(S0,L) since it represents the highest-probability parse for the sentence.

Next we detail two types of heuristic estimates: Pre-computed heuristics which

offer constant-time lookup (§4.1.1) and heuristics computed at test-time wich are based

on grammar-projections (§4.1.2).
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4.1.1 Pre-computed Heuristics

Pre-computed heuristics provide an admissible estimate of the Viterbi outside prob-

ability for items encountered during parsing. Since the estimates are pre-computed,

the cost can simply be looked up in constant time. The look-up is based on the item

as well as a summary of the context, a summary of the parts of the sentence not cov-

ered by the item for which we require an estimate. Generally, more detailed context

summaries provide better estimates and allow more efficient search, however, more

detailed summaries make estimates also more expensive to compute and to store.

In this setting, a heuristic estimate is the lowest probability parse for any sentence

fitting the context summary, which ensures that the heuristic is admissible. A number

of pre-computed heuristics have been devised for context free grammars resulting in

substantial reduction of parsing effort (Klein and Manning, 2003). We will apply the

same idea to improve efficiency for CCG parsing (§4.3.1).

For our experiments we chose the SX heuristic devised by Klein and Manning

(2003), which has been shown to offer a good trade-off between a reduction in pars-

ing effort and computational effort.3 The estimate [Ai, j,k, l] provides a bound on the

Viterbi outside probability of Ai, j when there are k words in the right context of the item

and l words on the left (Figure 4.3). The heuristic estimate for Ai, j is pre-computed

by considering all parses fitting the context of [Ai, j,k, l] and choosing the parse with

lowest-probability.4

Formally, we are given sentence s= a1 . . .aL and context c=(a1 . . .ai,Ai, j,a j+1 . . .aL),

abbreviated as c(Ai, j,s) and a context summary function σ(c(Ai, j,s)) provides a sum-

mary of c(Ai, j,s). For example, given the sentence time flies like an arrow we have the

following context and summary for I(S\NP1,2) with the SX heuristic:

c(S\NP1,2,s) = (time,S\NP1,2, like,an,arrow)

σ(c(S\NP1,2,s)) = [S\NP1,2,1,3]

If summary contains no information, then the estimate is always 0; we call this the

NULL estimate, it corresponds to simply using the Viterbi inside probability alone as

priority for an item I(Ai, j).

For notational convenience we use A to denote non-terminal Ai, j, and Ō(A,s) to

denote the Viterbi outside probability of Ai, j in sentence s = a1 . . .aL. We can then

3 The large non-terminal set for our CCG grammar made it impossible to experiment with more
sophisticated pre-computed heuristics discussed in (Klein and Manning, 2003).

4Pseudo-code can be found in Figure 10 of Klein and Manning (2003).
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? ? ai+1 aj

A

? ? ?
lk

h(Ai,j)

S

Figure 4.3: Illustration of the SX heuristic that provides an estimate of the Viterbi outside

probability for an item when there are k words in the left context and l words on the right.

compute the estimate h(A) as follows:5

h(A) = min
(A′,s′):σ(c(A′,s′))=σ(c(A,s))

Ō(A,s)

which is the exact Viterbi outside probability Ō(A′,s′) for some context c(A′,s′) whose

context summary fits the summary of the current sentence c(A,s). This requires con-

structing all Viterbi parses for every possible context summary which can be intractable

for complex heuristics.

4.1.2 Hierarchical A* and Grammar Projection Estimates

Pre-computed heuristics provide fast look-up but they are based on context summaries

rather than the actual context of the sentence that is currently being parsed. Estimates

based on context summaries become increasingly inaccurate for large contexts because

the parses, which back these estimates, have less and less to do with the actual contexts

(Klein and Manning, 2003).

Grammar projection estimates use the true context, i.e., the actual sentence, rather

than summaries (Klein and Manning, 2003; Felzenszwalb and McAllester, 2007; Pauls

and Klein, 2009a). This allows the heuristics to be more specific than pre-computed

estimates, mainly because the actual context is known and one is not constrained by

the issues of computing and storing estimates for all possible context summaries. As

a downside we have to calculate the heuristic during parsing, whereas pre-computed

heuristics can simply be looked-up. Grammar projection estimates do not use the true

5Weights are not log-probabilities, i.e., minimisation returns the lowest probability parse.
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grammar G with which we are trying to parse, but rather project G to some G′ with

which parsing is much simpler. The idea is to first parse with G′ exhaustively and to

use the result to guide the search in the original grammar G.

An extension to the idea of grammar projection estimates is Hierarchical A* (HA*;

Felzenszwalb and McAllister 2007, Pauls and Klein 2009a) which avoids having to to

parse exhaustively with G′ in order to find the best parse in G. Intuitively, we may

not require all of the items in G′ to provide estimates for parsing with G. HA* can

parse with multiple grammar projections as well as the true grammar at the same time,

making items of different grammars compete on a single agenda and prioritising them

such that necessary estimates are computed before they are required.

We consider the case of a single grammar projection G′ and the true grammar

G, the more general case is discussed in Pauls and Klein (2009a): The parser first

computes Viterbi inside probabilities in G′, then uses the resulting items to compute

Viterbi outside probabilities in G′, and then uses the Viterbi outside items as estimates

for parsing the true grammar.

The grammar projection is constructed as follows: Projection G′ defines a mapping

π : Σ→ Σ′ of the non-terminals Σ in G to a reduced set, the non-terminals Σ′ in G′. The

rule combinations licensed by G′ should never have higher weights (or probabilities)

than their counterparts in G. Otherwise the resulting heuristic may overestimate the

true probabilities, which would make the heuristic inadmissible. More formally, for

all rules r of the form BC⇒ A : wr with weight wr in G, we require the weight wr′ of

the projected counterpart r′, that is B′C′ ⇒ A′ : wr′ , to be smaller or equal wr′ ≤ wr.

Weights for rule projections can be found by minimising over the rules of the target

grammar collapsed by π:

wr′ = min
r∈G:π(r)=r′

wr (4.1)

We extend the item notation to make explicit the priorities assigned to items:

Viterbi inside items Ī(Ai, j) : 〈w1, p〉 show both the Viterbi inside probability w1, and

priority p. The deductive rules for A* parsing in the true grammar with a single gram-

mar projection are given in Figure 4.4. Both deductive rules require an outside item of

the gramamr projection G′ to prioritise the new item. The figure only shows the deduc-

tive rules for building Viterbi inside items Ī(Ai, j) in the true grammar using the previ-

ously computed grammar projection estimates; items for the projection are built with

the standard inside algorithm (Figure 2.17) and the outside algorithm (Figure 2.20).

The priority of grammar projection items on the agenda is simply the Viterbi inside
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IN−Base :
ai⇒ A : wr Ō(A′i−1,i) : wo

Ī(Ai−1,i) : 〈wr,wo〉

IN−Rec :
BC⇒ A : wr Ō(A′i, j) : wo Ī(Bi,k) : w1 Ī(Ck, j) : w2

Ī(Ai, j) : 〈wr⊗w1⊗w2,wo〉

Figure 4.4: Deduction schema for A* parsing with a grammar projection. We explicitly

show the calculation of priorities of new items using notation I(Ai, j) : 〈w, p〉 where A is

a non-terminal of the true grammar G, and w is the Viterbi inside probability, and p is

the agenda-priority. A′ is a non-terminal of the grammar projection that is mapped to A

in the true grammar G.

or outside probability, depending on the item type. We describe the actual grammar

projections used for experimentation in §4.3.2.

4.2 Adaptive Supertagging Experiments

Supertagging has been shown to improve the speed of a generative parser, although lit-

tle analysis has been reported beyond speedups (Clark, 2002). We ran experiments to

understand the time/accuracy tradeoff of adaptive supertagging, and to serve as base-

lines to A* parsing (§4.3).

For our experiments we used the generative CCG parser of Hockenmaier and

Steedman (2002). Generative parsers have the property that all item weights are non-

negative, which is required for A* techniques.6 Although not quite as accurate as the

discriminative parser of Clark and Curran (2007) in our preliminary experiments, this

parser is still quite competitive. It implements the CKY algorithm and we focus on the

PCFG and HWDep parsing models described in §3.3.2. For supertagging we used Den-

nis Mehay’s implementation of Clark (2002; §3.3.1). Due to differences in smoothing

of the supertagging and parsing models, we occasionally drop supertags returned by

the supertagger because they do not appear in the parsing model.7 We evaluate on all

sentences and thus penalise lower coverage.

Adaptive supertagging is parameterised by a beam size β and a dictionary cut-

6Indeed, all of the past work on A* parsing that we are aware of uses generative parsers (Pauls and
Klein, 2009b, inter alia).

7Less than 2% of supertags are affected by this.
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Condition Parameter Iteration 1 2 3 4 5 6

AST
β (beam width) 0.075 0.03 0.01 0.005 0.001

k (dictionary cutoff) 20 20 20 20 150

AST-covA
β 0.075 0.03 0.01 0.005 0.001 0.0001

k 20 20 20 20 150 150

AST-covB
β 0.03 0.01 0.005 0.001 0.0001 0.0001

k 20 20 20 20 20 150

Table 4.1: Beam step function used for standard (AST) and high-coverage (AST-covA

and AST-covB) supertagging.

off k that bounds the number of lexical categories considered for each word (§3.3.1).

Table 4.1 shows both the standard beam levels (AST) used by the C&C parser and

looser beam levels: AST-covA, a simple extension of AST with increased coverage and

AST-covB, also increasing coverage but with better performance for the HWDep model.

4.2.1 Results

Parsing results for the AST settings (Tables 4.2 and 4.3) confirm that it improves speed

by an order of magnitude over a parser without AST. Perhaps surprisingly, the number

of parse failures decreases with AST in some cases. The reason is that without AST,

the parser needs to prune more aggressively in order to make search feasible, and

the additional pruning removes more sentence-spanning derivations than AST would,

which leads to more parse failures.8

AST also clearly narrows the speed gap between the two models: Without AST,

PCFG is over five times faster than HWDep, but with AST the difference narrows to a

factor of two. The next section analysis the speed an accuracy tradeoff with AST in

more detail.

8Hockenmaier and Steedman (2002) saw a similar effect.
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Time(sec) Sent/sec Cats/word Fail UP UR UF LP LR LF

PCFG 290 6.6 26.2 5 86.4 86.5 86.5 77.2 77.3 77.3

PCFG (AST) 65 29.5 1.5 14 87.4 85.9 86.6 79.5 78.0 78.8

PCFG (AST-covA) 67 28.6 1.5 6 87.3 86.9 87.1 79.1 78.8 78.9
PCFG (AST-covB) 69 27.7 1.7 5 87.3 86.2 86.7 79.1 78.1 78.6

HWDep 1512 1.3 26.2 5 90.2 90.1 90.2 83.2 83.0 83.1
HWDep (AST) 133 14.4 1.5 16 89.8 88.0 88.9 82.6 80.9 81.8

HWDep (AST-covA) 139 13.7 1.5 9 89.8 88.3 89.0 82.6 81.1 81.9

HWDep (AST-covB) 155 12.3 1.7 7 90.1 88.7 89.4 83.0 81.8 82.4

Table 4.2: Results on development set (CCGbank section 00) when applying adaptive supertagging (AST) to two models of a generative CCG

parser. Performance is measured in terms of parse failures, labelled and unlabelled precision (LP/UP), recall (LR/UR) and F-score (LF/UF).
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Time(sec) Sent/sec Cats/word Fail UP UR UF LP LR LF

PCFG 326 7.4 25.7 29 85.9 85.4 85.7 76.6 76.2 76.4

PCFG (AST) 82 29.4 1.5 34 86.7 84.8 85.7 78.6 76.9 77.7

PCFG (AST-covA) 85 28.3 1.6 15 86.6 85.5 86.0 78.5 77.5 78.0
PCFG (AST-covB) 86 27.9 1.7 14 86.6 85.6 86.1 78.1 77.3 77.7

HWDep 1754 1.4 25.7 30 90.2 89.3 89.8 83.5 82.7 83.1
HWDep (AST) 167 14.4 1.5 27 89.5 87.6 88.5 82.3 80.6 81.5

HWDep (AST-covA) 177 13.6 1.6 14 89.4 88.1 88.8 82.2 81.1 81.7

HWDep (AST-covB) 188 12.8 1.7 14 89.7 88.5 89.1 82.5 81.4 82.0

Table 4.3: Results on test set (CCGbank section 23) when applying adaptive supertagging (AST) to two models of a CCG parser (cf. Table 4.2).
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4.2.2 Efficiency versus Accuracy

The most interesting result is the effect of the speedup on accuracy. As shown in Ta-

ble 4.4, the vast majority of sentences are actually parsed with a very tight supertagger

beam, raising the question of whether many higher-scoring parses are pruned.9 Despite

heavy pruning, labelled F-score improves by up to 1.6 for the PCFG model, although it

harms accuracy for the HWDep model as expected.

β Cats/word Parses %

0.075 1.33 1676 87.6

0.03 1.56 114 6.0

0.01 1.97 60 3.1

0.005 2.36 15 0.8

0.001k=150 3.84 32 1.7

Fail 16 0.9

Table 4.4: Breakdown of the number of development set sentences parsed for the

HWDep model (see Table 4.2) at each of the supertagger beam levels from the most

to the least restrictive setting when using adaptive supertagging.

In order to understand this effect, we filtered section 00 to include only sentences

of between 18 and 26 words (resulting in 610 sentences) for which we can perform

exhaustive search without pruning10, and for which we could parse without failure at

all of the tested beam settings. We then measured the log-probability of the highest

probability parse found under a variety of beam settings, relative to the log-probability

of the unpruned exact parse, along with the labelled F-score of the Viterbi parse under

each beam setting (Figure 4.5). The results show that PCFG actually finds worse results

as it considers more of the search space. In other words, the supertagger can actually

“fix” a bad parsing model by restricting it to a small portion of the search space. With

the more accurate HWDep model, finding worse results in larger search spaces does not

appear to be a problem and there is a clear improvement when considering the larger

search space. The next question is whether we can exploit this larger search space

without paying as high a cost in efficiency.

9Similar results are reported by Clark and Curran (2007).
10The fact that only a subset of short sentences could be exhaustively parsed demonstrates the need
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Figure 4.5: Log-probability of parses relative to exact solution vs. labelled F-score at

each supertagging beam-level.

4.3 A* Parsing Experiments

To compare approaches, we extended our baseline parser to support A* search. Follow-

ing Klein and Manning (2003) we restrict our experiments to sentences on which we

can perform exact search via using the same subset of section 00 as in §4.2.2. Before

considering CPU time, we first evaluate the amount of work done by the parser using

three hardware-independent metrics. We measure the number of items pushed (Pauls

and Klein, 2009a) and items popped, corresponding to the insert/decrease-key opera-

tions and the remove operation of a priority queue, respectively. Finally, we measure

the number of traversals, which counts the number of item probabilities computed,

regardless of whether the probability is discarded due to the prior existence of a better

probability.

We experiment with both PCFG and HWDep. Since HWDep is lexicalised it was not

feasible to experiment with pre-computed heuristics for this grammar. We therefore

considered different A* variants for each model: for PCFG we used A* with a simple

precomputed heuristic (§4.1.1), and for the more complex HWDep we used the hierar-

chical A* algorithm discussed earlier (§4.1.2) with two simple grammar projections.

for efficient search algorithms.
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4.3.1 Hardware-Independent Results: PCFG

For the PCFG model, we compared three agenda-based parsers: EXH prioritises items by

their span length, thereby simulating the exhaustive CKY algorithm; NULL prioritises

items by their Viterbi inside probability only; and SX is an A* parser that prioritises

items by their Viterbi inside probability times an admissible Viterbi outside probability

estimate (§4.1.2).11 The parsers are tested with and without adaptive supertagging

where the former can be seen as performing exact search (via A*) over the pruned

search space created by AST.

Figure 4.6 shows that A* with the SX heuristic decreases the number of items

pushed by up to 39% on the unpruned search space. Although encouraging, this is

not as impressive as the 95% speedup obtained by Klein and Manning (2003) with the

same heuristic on their CFG. On the other hand, the NULL heuristic works better for

CCG than for CFG, with a speedup of 29% for CCG and 11% for CFG (Klein and

Manning, 2003). These results carry over to the AST setting which shows that A*

can improve search even on the highly pruned search space. Note that A* only saves

work in the final iteration of AST, since for earlier iterations it must process the entire

agenda to determine that there is no spanning analysis.

Since there are many more categories in the CCG grammar than for a standard

Penn Treebank grammar we might have expected the SX heuristic to work better for

CCG than for a CFG. Why doesn’t it? We can measure how well a heuristic bounds

the true Viterbi outside probability in terms of slack: the difference between the true

and estimated outside probability. Lower slack means that the heuristic bounds the

true cost better and guides us to the exact solution more quickly. Figure 4.7 plots the

average slack for the SX heuristic against the number of words in the outside context.

Comparing this with an analysis of the same heuristic when applied to a CFG by Klein

and Manning (2003), we find that SX is less effective in our setting.12 Note the near

zero slack for contexts of size one: The main reason for the minimal slack is that a

single word in the context is in many cases the full stop at the end of a sentence, a very

predictable parsing step in a nearly finished sentence. However for larger context sizes

the slack becomes very large: The flexibility of CCG to analyse sentences in many

11The NULL parser is a special case of A*, also called uniform cost search, which in the case of parsing
corresponds to Knuth’s algorithm (Knuth, 1977; Klein and Manning, 2001), the extension of Dijkstra’s
algorithm to hypergraphs.

12Specifically, we refer to Figure 9 of their paper which uses a slightly different representation of
estimate sharpness.
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Figure 4.6: Exhaustive search (EXH) or simulated CKY, A* with no heuristic (NULL), and

A* with the SX heuristic in terms of millions of items pushed, items popped and item

traversals computed using the PCFG grammar with and without adaptive supertagging.
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Figure 4.7: Average slack of the SX heuristic. The figure shows the relative difference

between the estimated Viterbi outside probability and the true Viterbi outside probability

across the number of words in the context.

different ways means that the outside estimate for a non-terminal can be based on a

great number of different outside derivations, which does not bound the true probability

well.

4.3.2 Hardware-Independent Results: HWDep

Lexicalisation in the HWDep model makes the precomputed SX estimate impractical, we

therefore experiment with two grammar projections using the hierarchical A* (HA*)

algorithm described earlier (§4.1.2). The grammar projections are constructed by

defining simplified structural probabilities for HWDep (Table 3.3) using Equation 4.1.

We consider two projections: First, PCFGProj projects the grammar to a PCFG, com-

pletely removing lexicalisation, i.e., head words and lexical categories (Table 4.5). The

resulting structural probabilities p′(. . .) are nearly identical to PCFG. Second, LexcatProj

removes only head words but retains lexical categories (Table 4.6). In the experiments

we use HWDep as the true grammar and each projection individually, i.e., we do not

chain the two projections together in a hierarchy.

Figure 4.8 compares exhaustive search (EXH), A* with no heuristic (NULL), and
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Expansion probability p′(exp|P) = min
cP,wP

p(exp|P,cP#wP)

Head probability p′(H|P,exp) = min
cP,wP

p(H|P,exp,cP#wP)

Non-head probability p′(S|P,exp,H) = min
cP,wP

p(S|P,exp,H#cP#wP)

Lexcat probability p′(cS = ĉS|S#H,exp,P) = min
cS

p(cS|S#H,exp,P)

Head word probability p′(wS = ŵS|cS = ĉS#P,H,S,wP = ŵP) =

min
cS,wS,wP

p(wS|cS#P,H,S,wP)

Table 4.5: Factorisation of the PCFGProj grammar projection which simplifies the struc-

tural probabilities of the HWDep grammar given in Table 3.3.

Expansion probability p′(exp|P,cP) = min
wP

p(exp|P,cP#wP)

Head probability p′(H|P,exp,cP) = min
wP

p(H|P,exp,cP#wP)

Non-head probability p′(S|P,exp,H#cP) = min
wP

p(S|P,exp,H#cP#wP)

Lexcat probability p′(cS|S#H,exp,P) = p(cS|S#H,exp,P)

Head word probability p′(wS = ŵS|cS#P,H,S,wP = ŵP) =

min
wS,wP

p(wS|cS#P,H,S,wP)

Table 4.6: Factorisation of the LexcatProj grammar projection which simplifies the

structural probabilities of the HWDep grammar given in Table 3.3.

HA* in the two variants. For HA* (columns PCFGProj and LexcatProj), parsing effort

is broken down into the different item types computed at each stage: We distinguish

between the work carried out to compute the heuristic estimates, i.e., the inside and

outside items of the projection (Proj-Inside, Proj-Outside), and the work to compute

the inside items of the true grammar (HWDep-Inside). A* NULL applied to HWDep

saves about 44% of items pushed, which makes it slightly more effective than for the

PCFG model. However, the effort to compute the grammar projections outweighs their

benefit. We suspect that this is due to the large difference between the target grammar

and the projection: The PCFG projection is a simple grammar and so we improve the

probability of an item less often than in the target grammar.

The Lexcat projection performance is worst, we believe this is due to two reasons.

First, the projection requires about as much work to compute as the target grammar

without a heuristic (NULL). Second, the projection itself does not save a large amount

of work as can be seen in the statistics for the target grammar.
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Figure 4.8: Comparison between a CKY simulation (EXH), A* with no heuristic (NULL),

hierarchical A* (HA*) using two grammar projections for (a) standard search and (b)

AST. The graphs show a breakdown of the work carried out in computing various items.

4.4 CPU Timing Experiments

Hardware-independent metrics are useful for understanding agenda-based algorithms,

but what we actually care about is CPU time. We are not aware of any past work

that measures A* parsers in terms of CPU time, but as actual running time is the real

objective, experiments of this type are important. The savings in items processed by

an agenda parser come at a cost: operations on the priority queue data structure can

add significant runtime.

Timing experiments of this type are very implementation-dependent, so we took

care to implement the algorithms as cleanly as possible and to reuse as much of the ex-

isting parser code, written in Java, as we could. An important implementation decision

for agenda-based algorithms is the data structure used to implement the priority queue.

Preliminary experiments showed that a Fibonacci heap implementation outperformed

several alternatives: Brodal queues (Brodal, 1996), binary heaps, binomial heaps, and

pairing heaps.13

We carried out timing experiments on the best A* parsers for each model (SX and

NULL for PCFG and HWDep, respectively), comparing them with our CKY implementa-

tion (CKY) and the agenda-based CKY simulation (EXH); we tested on the same portion

of section 00 as in §4.2.2. Details on the setup for the timing experiments are in §3.2.2.

13We used the Fibonacci heap implementation at http://www.jgrapht.org

http://www.jgrapht.org
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Standard AST

PCFG HWDep PCFG HWDep

CKY 536 24489 34 143

EXH 1251 26889 41 155

A* NULL 1032 21830 36 121

A* SX 889 - 34 -

Table 4.7: Parsing time in seconds of CKY and agenda-based parsers with and without

adaptive supertagging. There are no timing results for HWDep with SX because the

heuristic is too difficult to compute for lexicalised grammars, we also omitted the HA*

parsers because they were outperformed by the simple NULL estimate (§4.3.2).

Standard AST

PCFG HWDep PCFG HWDep

CKY 80.4 85.5 81.7 83.8

EXH 79.4 85.5 80.3 83.8

A* NULL 79.6 85.5 80.7 83.8

A* SX 79.4 - 80.4 -

Table 4.8: Labelled F-score of exact CKY and agenda-based parsers with and with-

out adaptive supertagging. Within columns all parses have the same probability, thus

variances in accuracy are due to implementation-dependent differences in tie-breaking.

Table 4.7 presents the cumulative running times with and without adaptive supertag-

ging, while Table 4.8 reports F-scores.

The results (Table 4.7) are striking. Although the timing results of the agenda-based

parsers track the hardware-independent metrics, they start at a significant disadvantage

to exhaustive CKY with a simple control loop. This is most evident when looking at

the timing results for EXH, which in the case of the full PCFG model requires more than

twice the time than the CKY algorithm that it simulates. A* makes modest CPU-time

improvements in parsing the full space of the HWDep model. Although this decreases

the time required to obtain the highest accuracy, it is still a substantial tradeoff in speed

compared with AST.

On the other hand for AST, the tradeoff between speed and accuracy improves
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significantly: by combining AST with A* we observe a decrease in running time of

15% for the A* NULL parser of the HWDep model over CKY.14 As the CKY baseline with

AST is very strong, this result shows that A* holds real promise for CCG parsing.

4.5 Conclusions

This chapter has shown that adaptive supertagging is a strong technique for efficient

CCG parsing. Our analysis confirms tremendous speedups, and shows that for weak

models, it can even result in improved accuracy. However, for better models, the effi-

ciency gains of adaptive supertagging come at the cost of accuracy. One way to look at

this is that the supertagger has good precision with respect to the parser’s search space,

but low recall.

To our knowledge, we are the first to measure A* parsing speed both in terms of

running time and commonly used hardware-independent metrics. It is clear from our

results that the gains from A* do not come as easily for CCG as for CFG, and that

agenda-based algorithms like A* must make very large reductions in the number of

items processed to result in real-time savings, due to the added expense of keeping a

priority queue. However, we have shown that A* can yield real improvements even

over the highly optimised technique of adaptive supertagging: in this pruned search

space, a 44% reduction in the number of items pushed results in a 15% speedup in

CPU time.

In Chapter 5 we will exploit the observations in this chapter by combining parsing

and supertagging models in a principled way, making the supertagger impose a soft

constraint on the parser rather than a hard constraint.

14Our A* parsers always return the highest-probability solution despite our experiments showing
large fluctuations in accuracy (Table 4.8). These differences are due to unfortunate tie-breaking since
the solutions have the same probability.



Chapter 5

Integrated Supertagging and Parsing

In Chapter 4 we analysed the most successful approach to CCG parsing which is based

on a pipeline strategy of first supertagging and then parsing (§5.1). Variations on this

approach drive the widely-used, broad coverage C&C parser (Clark and Curran, 2004b,

2007; Kummerfeld et al., 2010). Our analysis explored the tradeoff between the effi-

ciency and accuracy of this approach and concluded that, while substantially increas-

ing efficiency, this method results in lower accuracy for the parser of Hockenmaier

(2003b).

In this chapter we show experimentally that this pipeline approach also signifi-

cantly lowers the upper bound on parsing accuracy (§5.2). The same experiment shows

that the supertagger prunes many bad parses. So, while we want to avoid the error

propagation inherent to a pipeline, ideally we still want to benefit from the key insight

of supertagging: that a sequence model over lexical categories can be quite accurate.

Our solution is to combine the features of both the supertagger and the parser into a

single, less aggressively pruned model. The challenge with this model is its prohibitive

complexity, which we address with both exact and approximate methods: dual decom-

position and belief propagation (§5.3). We present the first side-by-side comparison of

these algorithms on an NLP task of this complexity, measuring accuracy, convergence

behavior, and runtime. In both cases our model significantly outperforms the pipeline

approach, leading to the best reported results in CCG parsing (§5.4).

Our approach to avoid the pipeline problem (Felzenszwalb and McAllester, 2007)

is very much in line with much recent work in NLP. Tasks such as machine translation

(Dyer et al., 2008; Dyer and Resnik, 2010; Mi et al., 2008), part-of-speech tagging

(Jiang et al., 2008), named entity recognition (Finkel and Manning, 2009), and seman-

tic role labelling (Sutton and McCallum, 2005a; Finkel et al., 2006) have been im-

87
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proved by combined models. We focus on dual decomposition and belief propagation,

which have recently received much attention in the computational linguistics commu-

nity. Other work has tackled complex models using integer liner programming (Riedel

and Clarke, 2006) for inference, or Monte Carlo Markov Chain methods (Finkel et al.,

2006) for estimation, both of which have been successfully applied to complex NLP

models.

5.1 Supertagging and Parsing in a Pipeline

Supertagging (Bangalore and Joshi, 1999; Clark, 2002; Curran et al., 2006) is often

used to prune the parser’s search space: the parser only considers lexical categories

with high posterior probability (or other figure of merit) under the supertagging model

(Clark and Curran, 2004b). The posterior probabilities are then discarded and it is the

extensive pruning of lexical categories that leads to substantially faster parsing times.

Pruning the categories in advance this way has a specific failure mode: sometimes

it is not possible to produce a sentence-spanning derivation from the tag sequences

preferred by the supertagger, since the supertagger does not enforce grammaticality.

A workaround for this problem is adaptive supertagging (AST; §2.2.2) whose ac-

curacy and efficiency tradeoff we explored in Chapter 4. Recall that AST is based on

a step function over supertagger beam widths, relaxing the pruning threshold for lex-

ical categories only if the parser fails to find an analysis. The process either succeeds

and returns a parse after some iteration or gives up after a predefined number of iter-

ations. While efficient, the technique is inherently approximate: it will return a lower

probability parse under the parsing model if a higher probability parse can only be

constructed from a supertag sequence returned by a subsequent iteration. In this way

it prioritises speed over exactness, although the tradeoff can be modified by adjusting

the beam step function. Regardless, the technique remains approximate.

We will also explore reverse adaptive supertagging, a much less aggressive pruning

method that seeks only to make sentences parse-able when they otherwise would not

be due to an impractically large search space. Reverse AST starts with a wide beam,

narrowing it at each iteration only if a maximum chart size is exceeded. In this way it

prioritises exactness over speed.
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Condition Parameter Iteration 1 2 3 4 5

AST
β (beam width) 0.075 0.03 0.01 0.005 0.001

k (dictionary cutoff) 20 20 20 20 150

Reverse
β 0.001 0.005 0.01 0.03 0.075

k 150 20 20 20 20

Table 5.1: Beam step function used during test time for standard (AST) and less ag-

gressive (Reverse) AST throughout our experiments. Parameter β is a beam threshold

while k bounds the use of a part-of-speech tagging dictionary, which is used for words

seen less than k times (see §3.3.1 for an explanation of tagging dictionaries).

5.2 Oracle Parsing

What is the effect of these approximations? To answer this question we extend our

analysis of the tradeoff between practical efficiency and accuracy in §4.2.2. Specifi-

cally, we compute oracle best and worst values for labelled dependency F-score. The

oracle is simply the best or worst possible value obtainable by a given model under

certain settings and therefore presents an upper or lower bound on accuracy. In order

to compute the oracle we use the algorithm of Huang (2008; §5.2.1) on the hybrid

model of Clark and Curran (2007), the best model of their C&C parser (§3.3.3). We

computed the oracle (§5.2.2) on our development data, using both AST and Reverse

AST beams settings shown in Table 5.1.

5.2.1 Algorithm

Our CCG parser is evaluated on labelled, directed dependency recovery using F-measure

(§3.2.1). Suppose we want to compute the oracle F-score (i.e. best or worst possible)

on a combinatorial space of outcomes represented by a dynamic program. Recall that

under this evaluation method we represent the output y′ and ground truth y as variable-

sized sets of predicate-argument relations or dependencies. Recall that we can compute

precision P as |y∩y′|
|y′| and recall R as |y∩y′|

|y′| . F-measure is then given by:

F1(y,y′) =
2PR

P+R
=

2|y∩ y′|
|y|+ |y′| (5.1)

For a given test problem, y is fixed, and F1 is a function of two integers, |y∩y′| and
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|y′|, which we will call n and d, respectively.1 Note that we will use the terms item and

state from now on interchangeably.

The key idea is to use a dynamic program which treats F1 as a non-local feature of

the parse, dependent on values n and d. This requires the splitting of each item in an

otherwise usual CKY computation (§2.3.4) by all pairs 〈n,d〉 incident at that item. We

will use the term state-splitting to refer to splitting an item Ai, j into many items Ai, j,n,d ,

one for each 〈n,d〉 pair. The functions n+(·) and d+(·) represent the number of correct

and total dependencies introduced by a parsing action. The algorithm to compute these

state-split states is then given below:

Ai,i+1,n,d = TRUE iff n = n+(ai+1⇒ A), d = d+(ai+1⇒ A)

Ai, j,n,d =
⊕
k,B,C

⊕
{n′,n′′:n′+n′′+n+(BC⇒A)=n},

{d′,d′′:d′+d′′+d+(BC⇒A)=d}

Bi,k,n′,d′⊗ Ck, j,n′′,d′′ ⊗n+(BC⇒ A)

F̂1 =max
n,d

S0,L,n,d

(
1− 2n

d + |y|

)
where we use the boolean semiring (Table 2.1). The first two recursions build all

possible items permitted by the grammar and record their n and d values. The final

equation computes the maximum F̂1 based on sentence-spanning items S0,L,n,d .

However, F1 is strictly increasing in n, since we can never obtain a higher F1 by

choosing a lower n for some d. This observation allows us to compute the oracle F̂1 as

a maximisation over defined values of d, i.e.

F̂1 = max
d

(
max

n

2n
d + |y|

)
(5.2)

It is therefore sufficient to keep only the maximum value of n encountered for

each d. This allows us to use a simplified dynamic program, which computes items

N(Ai, j,d) maintaining the maximum value of n encountered for each d. The final oracle

algorithm is then given by the following recursions:

N(Ai,i+1,d) = n+(ai+1⇒ A) iff d = d+(ai+1⇒ A)

N(Ai, j,d) =
⊕
k,B,C

⊕
{d′,d′′:d′+d′′+d+(BC⇒A)=d}

N(Bi,k,d′)⊗ N(Ck, j,d′′) ⊗n+(BC⇒ A)

F̂1 =max
d

(
1− 2N(S0,L,d)

d + |y|

)
1For numerator and denominator.
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Viterbi F-score Oracle Max F-score Oracle Min F-score

LF LP LR LF LP LR LF LP LR cats

AST 87.38 87.83 86.93 94.35 95.24 93.49 54.31 54.81 53.83 1.3-3.6

Reverse 87.36 87.55 87.17 97.65 98.21 97.09 18.09 17.75 18.43 3.6-1.3

Table 5.2: Comparison of adaptive supertagging (AST) and a less restrictive setting

(Reverse) with Viterbi and oracle F-scores on CCGbank Section 00; we optimise for the

highest and lowest possible F-score (Oracle Max/Min) under each setting. The table

shows the labelled F-score (LF), precision (LP) and recall (LR) as well as the number

of lexical categories per word used (from first to last parsing attempt).

The recursions use the semiring 〈N∞
0 ,max,+,0,0〉 which operates over the positive

integers. The additive operator ⊕ is max and the multiplicative operator ⊗ becomes

+.

5.2.2 Results and Discussion

The results (Table 5.2) show that the oracle best accuracy for reverse AST is more than

3% higher than the aggressive AST pruning. In fact, it is almost as high as the upper

bound oracle accuracy of 97.73% obtained using perfect supertags—in other words,

the search space for reverse AST is theoretically near-optimal.2 We also observe that

the oracle worst accuracy is much lower in the reverse setting. It is clear that the

supertagger pipeline has two effects: while it beneficially prunes many bad parses,

it harmfully prunes some very good parses. We can also see from the scores of the

Viterbi parses that while the reverse condition has access to much better parses, the

model does not actually find them. This mirrors the result of Clark and Curran (2007)

that they use to justify AST.

Digging deeper, we compared the model score of the Viterbi solutions returned by

the parser against their F-score (Figure 5.1(a)) at a variety of fixed beam settings. We

did a similar experiment for the parses returned by the oracle algorithm (Figure 5.1(b))

and considered for both experiments only the subset of our development set which

could be parsed with all beam settings. Why is the parser unable to find better solu-

2This idealised oracle reproduces a result from Clark and Curran (2004a). The reason that using the
gold-standard supertags does not result in 100% oracle parsing accuracy is that some of the development
set parses cannot be constructed by the learned grammar.
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Figure 5.1: Comparison between model score and Viterbi F-score (a); and between

model score and oracle F-score (b) for different supertagger beams on a subset of

CCGbank Section 00. The model score in (b) decreases because the parsing model

does not necessarily assign higher probability to solutions with higher F-score.
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tions with decreasing beam settings despite having access to much better parses (Fig-

ure 5.1(a))? First, the parser was trained with supertags with beam setting β = 0.001

(see §3.4) explaining its poor performance beyond that. Second, it is common for

parsing models to perform better when pruned by a high-precision constraint such as a

supertagger (Roark and Hollingshead, 2009). The inverse relationship between model

score and F-score shows that the supertagger restricts the parser to mostly good parses

(under F-measure) that the model would otherwise disprefer. Exactly this effect is ex-

ploited in the pipeline model. However, when the supertagger makes a mistake, the

parser cannot recover.

5.3 Combination Methods

The supertagger obviously has good but not perfect predictive features. An obvious

way to exploit the supertagger features without being bound by its decisions is to in-

corporate these features directly into the parsing model. In our case both the parser

and the supertagger are feature-based models, so from the perspective of a single parse

tree, the change is simple: the tree is simply scored by the weights corresponding

to all of its active features. However, since the features of the supertagger are all

Markov features on adjacent supertags, the change has serious implications for search.

If we think of the supertagger as defining a weighted regular language consisting of

all supertag sequences, and the parser as defining a weighted mildly context-sensitive

language consisting of only a subset of these sequences, then the search problem is

equivalent to finding the optimal derivation in the weighted intersection of a regular

and mildly context-sensitive language. Even allowing for the observation of Fowler

and Penn (2010) that our practical CCG is context-free, this problem still reduces to

the construction of Bar-Hillel et al. (1964), making search very expensive.

This intersection corresponds to a new grammar that introduces sensitivity to the

Markov features of the supertagger. Roughly speaking, with a first-order tagging

model, rules such as

NP S\NP⇒ S (5.3)

are replaced with new rules

NPNPNP (S\NP)/NP S\NP NP⇒ S (5.4)

where each category is replaced with a category that tracks the first and last supertag

of the sentence fragment spanning this category. For example, (S\NP)/NP S\NP NP rep-
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resents a verb phrase that begins with a transitive verb (S\NP)/NP and ends with an

NP. The weights of these grammar rules include the weights of the original parser

grammar as well as the weights from the tagger. We can then use a dynamic program-

ming algorithm such as CKY (§2.3.4) to find the highest scoring structure according

to both the parsing and tagging models. This is guaranteed to give an exact solution

to the combined problem but it is often very inefficient, as can be seen by looking at

the items the dynamic program computes in each case: Parsing in the original scenario

uses items Ai, j of which there can be at most O(GL2) where G is the number of non-

terminals and L is the sentence length.3 In the intersected case we have items Ai, j,B,C

of which there can be O(G3L3) which is substantially more complex, particularly for

CCG where G is very large. Therefore we need approximations.

Fortunately, recent literature has introduced two relevant approximations to the

NLP community: loopy belief propagation (Pearl, 1988), applied to dependency pars-

ing by Smith and Eisner (2008); and dual decomposition (Dantzig and Wolfe, 1960;

Komodakis et al., 2007; Sontag et al., 2010, inter alia), applied to dependency parsing

by Koo et al. (2010), lexicalised CFG parsing by Rush et al. (2010), event extraction

(Riedel and McCallum, 2011), word-alignment for machine translation (DeNero and

Macherey, 2011), and machine translation itself (Rush and Collins, 2011b; Chang and

Collins, 2011). These algorithms are based on the exact dynamic programming algo-

rithms we presented for parsing (§2.3.4) and tagging (§2.3.5) but avoid the expensive

construction of Bar-Hillel. We apply both techniques to our integrated supertagging

and parsing model.

5.3.1 Loopy Belief Propagation

Belief propagation (BP; §2.3.6) is an algorithm for computing marginals (i.e. expec-

tations) on structured models. These marginals can be used for decoding (parsing) in

a minimum-risk framework (Smith and Eisner, 2008; see §2.3.3); or for training using

a variety of algorithms (Sutton and McCallum, 2011). We experiment with both uses

in §5.4. Many researchers in NLP are familiar with two special cases of belief propa-

gation: the forward-backward (§2.3.5) and inside-outside (§2.3.4) algorithms, used for

computing expectations in sequence models and context-free grammars, respectively.4

3 For simplicity we assume an unlexicalised grammar. In the lexicalised case, there would be at most
O(GL3) items since every item can be lexicalised by one of the L words.

4Forward-backward and inside-outside are formally shown to be special cases of belief propagation
by Smyth et al. (1997) and Sato (2007), respectively.
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F(t2) F(t3)

B(t1) B(t2)

s2T1 T2 s3 T3

e1 e2 e3

Figure 5.2: Supertagging factor graph with messages. Circles are variables and filled

squares are factors. We omit the message indices for brevity i.e. F(ti) instead of Fi(ti).

Our use of belief propagation builds directly on these two familiar algorithms.

The supertagger defines a distribution over tags T1...TL with values t1...tL, based on

emission factors e1...eL and transition factors s2...sL (Figure 5.2). The message Fi a

variable Ti receives from its neighbour to the left corresponds to the forward probabil-

ity, while messages from the right correspond to backward probability Bi (§2.3.5).

Fi(ti) =∑
ti−1

Fi−1(ti−1)si(ti−1, ti)ei−1(ti−1) (5.5)

Bi(ti) =∑
ti+1

Bi+1(ti+1)si+1(ti, ti+1)ei+1(ti+1) (5.6)

Note how we reuse notation for forward and backward items introduced in §2.3.5 to

represent messages. The quantities represented by forward and backward items are

identical to the messages in a factor graph; we will also reuse parse item notation for

messages in factor graphs for parse trees.

The current belief of a variable can be computed by taking the normalised product

of all its incoming messages (Equation 2.44). In the supertagger model, this quantity

is

p(ti) =
1
Z

Fi(ti)Bi(ti)ei(ti) (5.7)

where

Z = ∑
ti

Fi(ti)Bi(ti)ei(ti) (5.8)

Note how the definition of the forward probability in Equation 5.5 does not include

ei(ti), this differs from the original definition in Equation 2.35. We made this change

in order to make explicit that the emission probability is part of the belief of a tag.

Our parsing model is also a distribution over variables Ti, along with an additional

quadratic number of span(i, j) variables (see §2.3.6).5 We add this complex distribu-

5The parsing model is also a distribution over the tag variables but it uses different features.
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Figure 5.3: Factor graph for the combined parsing and supertagging model. Inside

I(Ai, j) and outside messages O(Ai, j) for non-supertag span variables span(i, j) are

omitted for brevity.

tion to our model as a single factor (Figure 5.3). This is a natural extension to the

use of complex factors described by Smith and Eisner (2008) and Dreyer and Eisner

(2009).

When a factor graph is a tree as in Figure 5.2, BP converges in a single iteration

to the exact marginals. However, when the model contains cycles, as in Figure 5.3,

we can iterate message passing. In many cases loopy BP will converge to approximate

marginals that are bounded under an interpretation from statistical physics (Yedidia

et al., 2001; Sutton and McCallum, 2011). Furthermore, at convergence, the beliefs

are not guaranteed to match the true marginals. However, in practice the beliefs are

usually quite a close approximation to the real values (Ihler et al., 2005; Cohn, 2007).

The TREE factor receives inside messages I(Ai, j) and sends outside messages O(Ai, j)

to the tag and span variables, taking into account beliefs from the sequence model. We

will omit the unchanged outside recursion for brevity (given in §2.3.4), but inside mes-

sages I(Ai, j) for category Ai, j in span(i, j) are computed as follows:

I(Ai, j) =


w(ai+1⇒ Ai, j)Fi(Ai, j)Bi(Ai, j)ei(Ai, j)︸ ︷︷ ︸

supertag messages

if j = i+1

∑
k,B,C

I(Bi,k)I(Ck, j)w(BC⇒ A) i < k ≤ j
(5.9)

Note that the only difference from the classic inside algorithm is that the recursive

base case of a category spanning a single word has been modified by a message from

the supertag that contains both forward and backward factors, along with a unary emis-
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sion factor, which doubles as a unary rule factor. This difference is also mirrored in the

forward and backward messages, which are identical to Equations 5.5 and 5.6, except

that they also incorporate outside messages from the tree factor:

Fi(ti) =∑
ti−1

Fi−1(ti−1)si(ti−1, ti)ei−1(ti−1)O(ti)︸︷︷︸
tree

(5.10)

Bi(ti) =∑
ti+1

Bi+1(ti+1)si+1(ti, ti+1)ei+1(ti+1)O(ti+1)︸ ︷︷ ︸
tree

(5.11)

Once all forward-backward and inside-outside probabilities have been calculated

the belief of supertag ti can be computed as the product of all incoming messages. The

only difference from Equation 5.7 is the addition of the outside message.

p(ti) =
1
Z

Fi(ti)Bi(ti)ei(ti)O(ti) (5.12)

The algorithm repeatedly runs forward-backward and inside-outside, passing their

messages back and forth, until these quantities converge.

5.3.2 Dual Decomposition

Dual decomposition (Rush et al., 2010; Koo et al., 2010) is a decoding (i.e. search)

algorithm for problems that can be decomposed into efficiently solvable subproblems

together with linear constraints that enforce some notion of agreement between the

subproblem solutions over a shared set of variables. A solution for the original com-

plex problem can be extracted from the solutions of the subproblems. The subproblems

are chosen so that they can be easily solved individually, for example, they may be tree-

structured so that max-product belief propagation can efficiently find exact solutions

(§2.3.6). The constraints are incorporated into the subproblems, and an iterative algo-

rithm can recover solutions to the original problem. The ensuing description follows

the excellent tutorial of Rush and Collins (2011a).

In our setting the subproblems are supertagging and parsing. Formally, assume we

have L words in the input sentence, Y as the set of valid parses, Z as the set of valid

supertag sequences, and T as the set of supertags. We define y(i, t) = 1 if parse tree

y has tag t at position i such that y ∈ Y , t ∈ T , and i ∈ {1 . . .L}; otherwise define

y(i, t) = 0. Similarly, for any tag sequence z, we define z(i, t) = 1 if sequence z has tag

t at position i, and z(i, t) = 0 otherwise. Figure 5.4 shows a parse and a supertagging

sequence which both have y(3,NP) = z(3,NP) = 1.
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Mark proved completeness

NP (S\NP)/NP NP
>

S\NP
<

S
(a)

Mark proved completeness

NP (S\NP)/NP NP
(b)

Figure 5.4: Example CCG derivation and supertagging sequence.

Given this notation, we want to solve the following optimisation problem for parser

f (y) and supertagger g(z):6

argmax
y∈Y ,z∈Z

f (y)+g(z) (5.13)

such that y(i, t) = z(i, t) for all (i, t) ∈ I

Here I = {(i, t) : i ∈ 1 . . .L, t ∈ T } denotes the set of all possible supertags for each

word. This corresponds to finding the best pair of y and z such that they share the

same tags. Solving Equation 5.13 without the equality constraints y(i, t) = z(i, t) is

straightforward since we have efficient, exact algorithms for both tagging (§2.3.5) and

parsing (§2.3.4); however, solving the combined problem with the constraints is as

hard as the construction of Bar-Hillel et al. (1964) we illustrated in the example given

in §5.3.

The first step to construct a dual decomposition algorithm is to formulate the La-

grangian for this problem. We introduce a Lagrangian multiplier u(i, t) for each equal-

ity constraint y(i, t) = z(i, t): The set of Lagrange multipliers is u = {u(i, t) : (i, t)∈ I}.
The Lagrangian is defined as

L(u,y,z) = f (y)+g(z)+∑
i,t

u(i, t)(y(i, t)− z(i, t)) (5.14)

which can be re-arranged as

L(u,y,z) =

(
f (y)+∑

i,t
u(i, t)y(i, t)

)
+

(
g(z)−∑

i,t
u(i, t)z(i, t)

)
(5.15)

Using the Lagrangian we can define the dual objective as

L(u) = max
y∈Y ,z∈Z

L(u,y,z)

= max
y∈Y

(
f (y)+∑

i,t
u(i, t)y(i, t)

)
+max

z∈Z

(
g(z)−∑

i,t
u(i, t)z(i, t)

)
(5.16)

6We will introduce weighting parameters for f (y) and g(z) in §5.4.
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u(0)(i, t) = 0 for all i ∈ {1 . . .L}, t ∈ T
for q = 1 to Q do

y(q) = argmaxy∈Y

(
f (y)+∑i,t u(q−1)(i, t)y(i, t)

)
[Parsing]

z(q) = argmaxz∈Z

(
g(z)−∑i,t u(q−1)(i, t)z(i, t)

)
[Tagging]

if y(q)(i, t) = z(q)(i, t) for all i, t

return (y(q),z(q))

else
u(q+1) = u(q)(i, t)−δ(q)

(
y(q)(i, t)− z(q)(i, t)

)
Figure 5.5: Dual decomposition algorithm for integrated parsing and tagging.

The dual objective solves each of the subproblems individually, each of which can be

solved efficiently by itself. The dual objective (Equation 5.16) presents an upper bound

that we want to make as tight as possible by solving the dual problem minu L(u). We

optimise the values of the u(i, t) variables using the same algorithm as Rush et al.

(2010) for their tagging and parsing problem (Figure 5.5).7 At each iteration the al-

gorithm finds y(q) and z(q) efficiently, it uses a step size δ(q) decaying over time steps

q = 1,2, . . . ,Q.8 An advantage of dual decomposition is that, on convergence, it recov-

ers exact solutions to the combined problem. The algorithm converges if the y(q) and

z(q) agree on all supertag assignments i.e. y(q)(i, t) = z(q)(i, t) for all i, t. In this case,

the Lagrangian multipliers cancel out

∑
i,t

u(i, t)(y(i, t)− z(i, t)) = 0 (5.17)

and therefore L(u,y,z) = f (y)+g(z) which means that we have a solution to the orig-

inal optimisation problem in Equation 5.13. However, if the algorithm does not con-

verge or we stop early, an approximation must be returned: following Rush et al. (2010)

we used the highest scoring output of the parsing sub-model over all iterations i.e. for

some q we choose y(q
′) such that

q′ = argmax
q′≤q

f (y(q
′)) (5.18)

7The u terms can be interpreted as the messages from factors to variables (Sontag et al., 2010) and
the resulting message passing algorithms are similar to the max-product algorithm (§2.3.6).

8We describe the setting of this parameter in §5.4.
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5.4 Experiments

We use the C&C parser (Clark and Curran, 2007) and its supertagger (Clark, 2002).

The baseline is the hybrid dependency model we described in §3.3.3 and our integrated

model extends the hybrid model by adding the supertagger features; we add the default

features of the C&C supertagger described in §3.3.1. The parser relies solely on the

supertagger for pruning, using CKY for search over the pruned space. Training re-

quires repeated calculation of feature expectations over packed charts of derivations.

All models were trained with the parser’s L-BFGS trainer (§3.4) except in the LBP

training experiments (§5.4.4) where we used SGD. Our settings are identical to previ-

ous work (Clark and Curran, 2007) apart from the larger training beams we described

in §3.4.9

Model combination. We combine the parser and the supertagger over the search

space defined by the set of supertags within the supertagger beam (see Table 5.1), Re-

stricting the search space to the supertagger beam avoids having to perform inference

over the prohibitively large set of parses spanned by all supertags, which is intractable

on current hardware. Hence at each beam setting, the model operates over the same

search space as the baseline; the difference is that we score parses with the integrated

model instead.

Piecewise training. The piecewise estimator (Sutton and McCallum, 2009) is an

efficient way to train large models by decomposing the models into pieces which are

trained individually and combined at test time. We separate our model into is original

parts, the supertagging and parsing sub-model and combine their weights at test-time

using either dual decomposition or belief propagation. Piecewise training is particu-

larly well suited for Conditional Random Fields (§2.3.1) since it avoids having to ex-

plicitly calculate the global partition function Z (Sutton and McCallum, 2005b), which

is expensive. Instead, each sub-model is normalised individually. The piecewise ap-

proximation over r parts of the graph gives an upper-bound on the original partition

function Z (Sutton and McCallum, 2009; Cohn, 2007):

logZ ≤∑
r

logZr (5.19)

where each sub-graph has its own partition function Zr; proof can be found in Sutton

and McCallum (2009).

9The larger beam settings only marginally improve accuracy for parsing with AST. However, for
Reverse the wider beam settings are more effective since it uses wider beam settings more often.
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We will now describe the training objective we use in detail. Our integrated model

is based on the hybrid dependency model (§3.3.3) where each sentence in the training

data is paired with a predicate-argument structure. Formally, we are given training data

D = {〈x(i),y(i)〉}m
i=1, where x(i) ∈ X is drawn from a set of possible input sentences,

and each parse y(i) ∈ Y (x(i)), a predicate-argument structure, is drawn from a set of

possible parses, function l(y) returns the supertags z for parse y, and z is in the set of

all supertag sequences Z(x) for sentence x. We want to find the parameters θ of our

model, where each λk ∈ θ is the weight of an associated feature hk(x,y) and θ = θa∪θb

is a concatenation of M parsing weights θa and N supertagging weights θb. Function

fa(x,y) maps inputs to the vector h1(x,y), . . . ,hM(x,y), and fb(x, l(y)) maps inputs to

the vector hM+1(x, l(y)), . . . ,hM+N(x, l(y)).

The objective we optimise is the sum of the log-likelihoods of the parsing factor

`a(D;θ) and the supertagging factor `b(D;θ) as well as a Gaussian prior G(θ) over all

parameters:

`PW (D;θ) = `a(D;θa)+ `b(D;θb)−G(θ) (5.20)

`PW (D;θ) =
m

∑
i=1

[
log

∑d∈∆(y(i)) exp{θTa fa(x(i),〈d,y(i)〉)}
∑〈d′,y′〉∈Ω(x(i)) exp{θTa fa(x(i),〈d′,y′〉)}

]
(5.21)

+
m

∑
i=1

[
θ
T
b fb(x(i), l(y(i)))− log ∑

z∈Z(x(i))

exp{θTb fb(x(i),z)}
]
− ∑

λk∈θ

λ2
k

2σ2

where we use Equation 3.11 to define `a, which sums over all derivations d of a

predicate-argument structure y. We denote ∆(y) as the set of all derivations leading

to dependency structure y, and Ω(x) is the set of all dependency structures and deriva-

tions for x. For the supertagger we use a normal conditional log-likelihood formulation

`b (Equation 2.16).

We only use the supertagger features to compute the supertagger-likelihood `b,

and parser features are only used for the parser likelihood `a. The gradients for the

parser features are computed such as in the dependency model (Equation 3.13) and the

gradients for the supertagger features λk, where M+1≤ k ≤ N +M, are given as:

∂

∂λk
=

m

∑
i=1

[
hk(x(i), l(y(i)))− ∑

z∈Z(x(i))

exp{θTb fb(x(i),z)}
∑z′∈Z(x(i)) exp{θTb fb(x(i),z′)}

hk(x(i),z)

]
− λk

σ2
k

Loopy Belief Propagation. For belief propagation we defined convergence when the

message values did not change by a factor of more than 10−5. We introduce a model
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weighting parameter 0< γ< 1 which expresses the relative weight of the messages sent

by the parsing sub-model; the supertagger weight is then simply 1− γ. The weighting

changes the messages computed by the supertagger (Equations 5.10 and 5.11) to

Fi(ti) =∑
ti−1

Fi−1(ti−1)si(ti−1, ti)ei−1(ti−1)

O(ti)︸︷︷︸
tree

γ

(5.22)

Bi(ti) =∑
ti+1

Bi+1(ti+1)si+1(ti, ti+1)ei+1(ti+1)

O(ti+1)︸ ︷︷ ︸
tree

γ

(5.23)

and the messages computed by the tree factor to

I(Ai, j) =


w(ai⇒ Ai, j)

Fi(Ai, j)Bi(Ai, j)ei(Ai, j)︸ ︷︷ ︸
supertag messages


(1−γ)

if j = i+1

∑
k,B,C

I(Bi,k)I(Ck, j)w(BC⇒ A) i < k ≤ j

(5.24)

We tuned the γ parameter on the development set and found that γ = 0.5 performed

best.

Dual Decomposition. For dual decomposition we set the step size δ(q) used by the

algorithm in Figure 5.5 as follows: We start with δ(0) = 0.5 and define

δ
(q) = δ

(0)×2−µ(q) (5.25)

where µ(q) is the number of times the Lagrangian L(u(q
′))> L(u(q

′−1)) for q′ ≤ q. The

step size halves every time the dual increases from one iteration to the next.

Similar to belief propagation, we use a model weighting parameter 0< γ< 1 which

expresses the relative weight of the parsing sub-model; the supertagger weight is 1−γ.

This changes the updates of the dual decomposition algorithm in Figure 5.5 to

y(k) = argmax
y∈Y

(
f (y)+

[
∑
i,t

u(q−1)(i, t)y(i, t)

]γ )
[Parsing] (5.26)

z(k) = argmax
z∈Z

g(z)−
[
∑
i,t

u(q−1)(i, t)z(i, t)

](1−γ)
 [Tagging] (5.27)

We tuned the parameter on the development set and found that a weighting of γ = 0.4

performed best.

Decoding Algorithms. For decoding we run belief propagation (BP) and dual de-

composition (DD) for many iterations and irrespective of convergence we use the fol-

lowing decoding algorithms: For BP we recover a minimum-risk dependency structure
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from the current marginals using the maximum dependency recall algorithm outlined

in §3.3.3. For DD, we find the highest-scoring derivation using the Viterbi algorithm

and we return the dependency-structure to which the derivation leads; at the last itera-

tion of DD, we return the highest-scoring dependency-structure seen over all iterations

or the solution at convergence. Note that the hybrid dependency model is defined in

terms of dependency-structures but it is still possible to recover individual derivations.

In preliminary experiments, we found that the accuracy difference between Viterbi

decoding and maximum dependency recall decoding is minimal.

Coverage. The coverage of a parser is the percentage of sentences for which an

analysis could be returned for a given data set. The coverage for all parsers in this

and the next chapter is 99.22% on the development set (section 00 of CCGbank) and

99.63% on the test set (section 23). This is because every parser is subject to the same

grammar and beam restrictions (§3.3.3) and we do not change the search space.

5.4.1 Parsing Accuracy

We first measure the accuracy of the piecewise trained model which is then decoded

using belief propagation (BP) and dual decomposition (DD). Figure 5.6 shows the

evolving accuracy of the models on the development set. In line with our oracle exper-

iment, these results demonstrate that we can coax more accurate parses from the larger

search space provided by the reverse setting; the influence of the supertagger features

allow us to exploit this advantage.

One behavior we observe in the graph is that the DD results tend to incremen-

tally improve in accuracy while the BP results quickly stabilise, mirroring the result

of Smith and Eisner (2008). Accuracy for DD improves because it continues to find

higher scoring parses at each iteration, and hence the results change. However for BP,

even if the marginals have not converged, the minimum risk solution turns out to be

fairly stable across successive iterations.

We next compare the algorithms against the baseline on our test set (Table 5.3).

We find that the early stability of BP’s performance generalises to the test set as does

DD’s improvement over several iterations. More importantly, we find that the applying

our combined model using either algorithm consistently outperforms the baseline after

only a few iterations. Overall, we improve the labelled F-measure by 1.1% and unla-

belled F-measure by nearly 0.7% over the baseline. To the best of our knowledge, the

results obtained with BP and DD are the best reported results on this task using gold
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Figure 5.6: Labelled F-score of baseline (BL), belief propagation (BP), and dual de-

composition (DD) on section 00, using either adaptive supertagging (AST) or reverse

adaptive supertagging (Rev).

POS tags.

Next, we evaluate performance when using automatic part-of-speech tags as input

to our parser and supertagger (Tables 5.4 and 5.5). This enables us to compare against

the results of Fowler and Penn (2010), who trained the Petrov parser (Petrov et al.,

2006) on CCGbank. We outperform them on all criteria. Hence our combined model

represents the best CCG parsing results under any setting.

Finally, we revisit the oracle experiment of §5.2 using our combined models (Fig-

ure 5.7). Both show an improved relationship between model score and F-measure.

5.4.2 Algorithmic Convergence and Exactness

Figure 5.6 shows that parse accuracy converges after a few iterations. Do the algo-

rithms converge? BP converges when the marginals do not change between iterations,

and DD converges when both sub-models agree on all supertags. We measured the
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AST Reverse

LF UF ST LF UF ST

Baseline 87.73 93.09 94.33 87.65 93.06 94.01

C&C ’07 87.64 93.00 94.32 - - -

BPq=1 88.25 93.33 94.60 88.86 93.75 94.84
BPq=25 88.22 93.32 94.58 88.84 93.75 94.81

DDq=1 87.74 93.10 94.33 87.67 93.07 94.02

DDq=25 88.14 93.24 94.59 88.80 93.68 94.82

Table 5.3: Results on test set (section 23) for decoding the integrated model using dual

decomposition (DD) or belief propagation (BP) for q iterations, evaluated by labelled

and unlabelled F-score (LF/UF) and supertag accuracy (ST). We compare against the

previous best result of Clark and Curran (2007); they do not report figures for the reverse

condition. Our baseline is their model with wider training beams (§3.4).

LF LP LR UF UP UR

Baseline 85.53 85.73 85.33 91.99 92.20 91.77

Petrov I-5 85.79 86.09 85.50 92.44 92.76 92.13

BPq=1 86.45 86.75 86.17 92.60 92.92 92.29
DDq=25 86.35 86.65 86.05 92.52 92.85 92.20

Table 5.4: Results on development set (section 00) with automatically assigned POS

tags. Petrov I-5 is based on the parser output of Fowler and Penn (2010); we evaluate

on sentences for which all parsers returned an analysis (1834 sentences for section

00).

LF LP LR UF UP UR

Baseline 85.74 85.90 85.58 91.92 92.09 91.75

Petrov I-5 86.01 86.29 85.74 92.34 92.64 92.04

BPq=1 86.84 87.08 86.61 92.57 92.82 92.32
DDq=25 86.68 86.90 86.46 92.44 92.67 92.21

Table 5.5: Results on test set (section 23) with automatically assigned POS tags (cf.

Table 5.4). We evaluate on sentences for which all parsers returned an analysis (2323

sentences for section 23).
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(a) Belief Propagation
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(b) Dual Decomposition

Figure 5.7: Comparison between model score and F-score for the integrated model

using belief propagation (a) and dual decomposition (b); the results are based on the

same data as Figure 5.1.

.
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Figure 5.8: Proportion of sentences with converged solutions across iterations for belief

propagation (BP) and dual decomposition (DD) with maximum q = 1000.

convergence of each algorithm under these criteria over 1000 iterations (Figure 5.8).

Initially, DD converges much faster, while BP in the reverse condition converges quite

slowly; however, BP overtakes DD after 13 iterations. This is interesting when con-

trasted with its behavior on parse accuracy–after one iteration, it has converged on only

1.5% of sentences, but its accuracy is already the highest at this point. Over the en-

tire 1000 iterations, most sentences converge: all sentences for BP (both in AST and

reverse) and all but 41 (2.1%) for DD in reverse (6 in AST).

We mentioned that DD can recover exact solutions when it converges (§5.3.2).

Figure 5.8 shows that it can find exact solutions relatively quickly for our problem.

Notably, about 42% of sentences converge after the first iteration of DD, at which

point no Lagrangian constraints have been added to the subproblems. The number of

sentences converged at the first iteration indicates how many exact solutions the parser

can recover alone and how many exact solutions are due to DD.

For BP there is no guarantee that it can find exact solutions at all, even when the

marginals converge (§2.3.6). But how often does BP find the exact solution? We

evaluate the number of exact BP solutions in the reverse condition by comparing the

BP parses after iterations q = 1,2, . . . ,1000 to DD solutions at q = 1000. At q = 1000,

DD has found exact solutions for 98% of sentences (Figure 5.9), a good proxy to

determine the exactness of the BP solutions. It turns out that nearly 91% of BP parses
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Figure 5.9: Matches between belief propagation (BP) solutions at iteration q and the

dual decomposition (DD) solutions at q = 1000 as well as the BP solutions at q = 1000

in the reverse condition; the former is an indicator of the exactness of the BP solutions.

at q = 1 match the final DD solutions. This explains the high initial performance of BP

(Figure 5.6) but it is also interesting to contrast this to its low algorithmic convergence

rate of only about 1.5% at q = 1 (Figure 5.8).

Furthermore, the high degree of similar solutions returned by BP and DD is also

interesting in terms of the decoding decision rules we used in each setting: For BP we

rely on minimum-risk decoding and for DD we use Viterbi decoding (§2.3.3); however,

the results show a very high overlap in the solutions they recover. A likely scenario

is that the parse distribution is very peaked, resulting in very few high probability

derivations that are recovered by both decision rules.

5.4.3 Parsing Speed

Because the C&C parser with AST is very fast, we wondered about the effect of BP

and DD on speed for our model. We measured the runtime (§3.2.2) of the algorithms

under the condition that we stopped at a particular iteration (Table 5.6). Although our

models improve substantially over C&C, there is a significant cost in speed for the

best result. The experiment also confirms that BP at q = 1 is more accurate than DD

at a similar speed. Furthermore, BP can parse more accurately than the baseline at

comparable speed.
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AST Reverse

sent/sec LF sent/sec LF

Baseline 65.6 87.38 5.8 87.36

BPq=1 60.1 87.70 5.6 88.35

BPq=5 45.2 87.70 4.6 88.33

BPq=25 34.4 87.70 3.5 88.33

DDq=1 63.8 87.40 5.8 87.38

DDq=5 41.4 87.65 3.0 88.09

DDq=25 32.2 87.71 1.9 88.29

Table 5.6: Parsing rate in sentences per second and labelled F-measure on section 00.

AST Reverse

LF UF ST LF UF ST

Baseline 86.7 92.7 94.0 86.7 92.7 93.9

BP inf 86.8 92.8 94.1 87.3 93.2 94.3

BP train 86.4 92.6 93.9 85.7 92.2 93.2

Table 5.7: Results of training with SGD on approximate gradients from LPB on section

00. We test LBP in both inference and training (train) as well as in inference only (inf);

a maximum number of 10 iterations is used both during training and testing.

5.4.4 Training the Integrated Model

In the experiments reported so far, the parsing and supertagging models were trained

with the piecewise estimator. Although the outcome of these experiments was suc-

cessful, we wondered if we could obtain further improvements by jointly training the

integrated model using belief propagation.

Since the gradients produced by (loopy) BP are approximate, for these experiments

we used a stochastic gradient descent (SGD) trainer (Bottou, 2003; see §3.4). There are

two changes to our setup: We used the lower performing normal-form model (§3.3.3)

and we used the stricter training beam settings from Clark and Curran (2007; §3.4)

to make estimation on a single machine practical. At test time we used the Viterbi

algorithm to decode the normal-form model. We also had to restrict the maximum

number of BP iterations during training to 10, which resulted in early stopping for



110 Chapter 5. Integrated Supertagging and Parsing

some sentences.

Curiously, however, we found that the combined model does not perform as well

when the parameters are trained with belief propagation (Table 5.7). One reason for

the lower performance maybe the more restrictive training setup. Another may be

that belief propagation over-fits the training data with our complex model (Sutton and

McCallum, 2005b; Cohn, 2007). The piecewise estimator is likely to avoid this issue

because it separates the two sub-models during training.

Training a model using DD would require a different optimisation algorithm based

on Viterbi results (e.g. the perceptron) which is an interesting avenue for future work.

5.5 Conclusions

This chapter has introduced an integrated model of both supertagging and parsing. We

have demonstrated that the interaction between supertagging and parsing can be better

exploited in an integrated model rather than by chaining the two models in a pipeline.

Our empirical comparison of BP and DD also complements the theoretically-oriented

comparison of marginal- and margin-based variational approximations for parsing de-

scribed by Martins et al. (2010).

We have shown that the aggressive pruning used in adaptive supertagging sig-

nificantly harms the oracle performance of the parser, though it mostly prunes bad

parses. Based on these findings, we combined parser and supertagger features into

a single model. Using belief propagation and dual decomposition, we obtained more

principled—and more accurate—approximations than a pipeline, improving both pars-

ing as well as supertagging accuracy. Models combined using belief propagation

achieve very good performance immediately, despite an initial convergence rate of

just over 1%, while dual decomposition produces comparable results after several it-

erations, and algorithmically converges more quickly. Moreover, the initial solutions

recovered by belief propagation are highly exact at over 90% despite the lack of for-

mal guarantees. For our task we found that belief propagation achieved comparable

accuracy to dual decomposition but in significantly less time. Our best result of 88.9%

represents the state-of-the art in CCG parsing accuracy.



Chapter 6

Task-specific Optimisation

In Chapter 5 we have shown that a single integrated approach to supertagging and

parsing improves accuracy for both tasks compared to the traditionally used pipeline

strategy of separating them into subsequent steps. The integrated model is a Condi-

tional Random Field (CRF; Lafferty et al., 2001), a choice that has been very success-

ful for parsing models (Clark and Curran, 2007; Finkel et al., 2008). In practice, CRFs

are usually trained by maximising the conditional log-likelihood (CLL) of the train-

ing data (§2.3.2). However, it is widely appreciated that optimising for task-specific

metrics often leads to better performance on those tasks (Och, 2003).

In this chapter, we demonstrate that optimising each sub-model towards a separate

task-specific metric, while combining them at test-time can further improve the accu-

racy of the integrated approach. For this purpose we adopt the softmax-margin (SMM)

objective (Sha and Saul, 2006; Povey and Woodland, 2002; Gimpel and Smith, 2010a)

(§6.1). In addition to retaining a probabilistic interpretation and optimising towards

a loss function, it is also convex, making it straightforward to optimise. Gimpel and

Smith (2010a) show that it can be easily implemented with a simple change to stan-

dard likelihood-based training, provided that the loss function decomposes over the

predicted structure.

Unfortunately, the widely-used F-measure metric does not decompose over parses.

Previous work has focused on approximations thereof, both for sequence models (Al-

tun et al., 2003) and parsing models (Taskar et al., 2004). We introduce a novel dy-

namic programming algorithm that enables us to compute the exact quantities needed

under the softmax-margin objective using F-measure as a loss (§6.2). We experiment

with F-measure and several other metrics, including precision, recall, and decompos-

able approximations thereof. Our ability to optimise towards exact metrics enables

111
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us to verify the effectiveness of more efficient approximations. We test the training

procedures on the CCG parser of Clark and Curran (2007), obtaining substantial im-

provements under a variety of conditions. We then apply this method to our integrated

model (Chapter 5) and optimise each sub-model towards a different loss. The improve-

ments are additive, obtaining the best reported results on this task (§6.3).

6.1 Softmax-Margin Training

The softmax-margin objective modifies the standard likelihood objective for CRF train-

ing (§2.3.2) by reweighting each possible outcome of a training input according to its

risk, which is simply the loss incurred on a particular example. This is done by in-

corporating the loss function directly into the linear scoring function of an individual

example.

Formally, we are given m training pairs (x(1),y(1))...(x(m),y(m)), where each x(i) ∈
X is drawn from the set of possible inputs, and each y(i) ∈ Y (x(i)) is drawn from a

set of possible instance-specific outputs. We want to learn the K parameters θ of a

log-linear model, where each λk ∈ θ is the weight of an associated feature hk(x,y).

The function f (x,y) maps input/output pairs to the vector h1(x,y)...hK(x,y), and our

log-linear model assigns probabilities in the usual way.

p(y|x) = exp{θT f (x,y)}
∑y′∈Y (x) exp{θT f (x,y′)} (6.1)

The conditional log-likelihood objective function is given by Equation 6.2 (Figure 6.1).

Intuitively, this objective is minimised when the first term, corresponding to the sum

of the weights of the features applying to the correct solution, is large and the second

term, corresponding to the partition function, that is the sum of the weights of the

features firing for all possible solutions, is small (§2.3.2). Hence, the optimiser tries

to choose high weights on features applying to correct predictions and low or even

negative weights for features firing on incorrect predictions.

Now consider a function `(y,y′) that returns the loss incurred by choosing to output

y′ when the correct output is y. The softmax-margin objective simply modifies the

unnormalised, unexponentiated score θT f (x,y′) by adding `(y,y′) to it. This yields the

objective function (Equation 6.3) and gradient computation (Equation 6.4) shown in

Figure 6.1. Intuitively, this objective forces the optimiser to make weights on incorrect

predictions even more negative due to the influence of the loss function.
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min
θ

m

∑
i=1

−θ
T f (x(i),y(i))+ log ∑

y∈Y (x(i))

exp{θT f (x(i),y)}

 (6.2)

min
θ

m

∑
i=1

−θ
T f (x(i),y(i))+ log ∑

y∈Y (x(i))

exp{θT f (x(i),y)+ `(y(i),y)}

 (6.3)

∂

∂λk
=

m

∑
i=1

−hk(x(i),y(i))+ ∑
y∈Y (x(i))

exp{θT f (x(i),y)+ `(y(i),y)}
∑y′∈Y (x(i)) exp{θT f (x(i),y′)+ `(y(i),y′)}hk(x(i),y)


(6.4)

Figure 6.1: Conditional log-likelihood (Equation 6.2), Softmax-margin objective (Equa-

tion 6.3) and gradient (Equation 6.4).

This straightforward extension has several desirable properties. In addition to hav-

ing a probabilistic interpretation, it can be shown to minimise a bound on expected

risk, and it is convex (see Appendix A of (Gimpel and Smith, 2010b) for proof).

We can also see from Equation 6.4 that the only difference from standard CLL

training is that we must compute feature expectations with respect to the cost-augmented

scoring function. As Gimpel and Smith (2010a) discuss, if the loss function decom-

poses over the predicted structure, we can treat its decomposed elements as unweighted

features that fire on the corresponding structures, and compute expectations in the nor-

mal way. In the case of our parser, where we compute expectations using the inside

and outside algorithms (§2.3.4), a loss function decomposes if it can be incrementally

computed over items or productions of a CKY chart. In other words, the loss func-

tion needs to be incrementally computable over the individual sub-trees of a derivation

(Figure 6.2).

6.2 Loss Functions for Parsing

Ideally, we would like to optimise our parser towards a task-based evaluation. Our

CCG parser is evaluated on labelled, directed dependency recovery using F-measure

(Clark and Hockenmaier, 2002) as described in §3.2.1. Recall that under this evalua-

tion we represent output y′ and ground truth y as variable-sized sets of dependencies

(see §2.1.2). We can then compute precision P(y,y′), recall R(y,y′), and F-measure
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Mark proved  completeness  

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

items Ai,j

Figure 6.2: Hypergraph for a derivation for a simple sentence. Its loss needs to be

incrementally computable over all parent-child sub-trees; each individual computation

has only access to the local sub-tree. The sub-tree for NP0,1 S\NP1,3⇒ S0,3 is high-

lighted.

F1(y,y′).

P(y,y′) =
|y∩ y′|
|y′| (6.5)

R(y,y′) =
|y∩ y′|
|y| (6.6)

F1(y,y′) =
2PR

P+R
=

2|y∩ y′|
|y|+ |y′| (6.7)

These metrics are positively correlated with performance – they are gain functions.

To incorporate them in the softmax-margin framework we reformulate them as loss

functions by subtracting from one.

6.2.1 F-Score-Augmented Expectations with Exact Loss Functions

Unfortunately, none of these metrics decompose over parses. However, the individual

statistics that are used to compute them do decompose, a fact we will exploit to devise

an algorithm that computes the necessary expectations. This new algorithm is closely

related to the dynamic program we used to compute oracle F-measure parses in §5.2.1.

In this section we will first focus on exactly optimising F-measure at the sentence-level

and then outline an algorithm for the corpus-level.

Note since y is fixed for every sentence, F1 is a function of two integers: |y∩ y′|,
representing the number of correct dependencies in y′; and |y′|, representing the total

number of dependencies in y′, which we will denote as n and d, respectively. Each

pair 〈n,d〉 leads to a different value of F1. Importantly, both n and d decompose over

parses. This is illustrated in Figure 6.3 which shows that we could compute an exact
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Mark proved  completeness  

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,: n1, d1 : n2, d2

items Ai,j

F1 =
2(n1 + n2)

d1 + d2 + |y|

Figure 6.3: Illustration of how sentence-level F-measure can decompose over parses

by combining the dependency counts n and d of individual sub-structures.

sentence-level F-measure if we had 〈n,d〉 pairs at every item Ai, j; we use notation

Ai, j : n,d to denote an 〈n,d〉 pair incident at Ai, j.1

The key idea will be to treat F1 as a non-local feature of the parse, dependent on

values n and d. To compute expectations we split each item in an otherwise usual

inside-outside computation by all pairs 〈n,d〉 incident at that item. This is similar to

the algorithm in §5.2.1 which maximised over n given d, whereas the new algorithm

keeps track of all possible n and d.

Formally, our goal will be to compute expectations over the sentence a1...aL. In

order to abstract away from the particulars of CCG we present the algorithm in rela-

tively familiar terms as a variant of the classic inside-outside algorithm (Baker 1979;

§2.3.4). The classic algorithm associates inside probability I(Ai, j) and outside proba-

bility O(Ai, j) with Ai, j. The expectation of A spanning positions i through j is simply

I(Ai, j)O(Ai, j)/I(GOAL).

Our algorithm extends these computations to state-split items Ai, j,n,d . Using func-

tions n+(·) and d+(·) to respectively represent the number of correct and total depen-

dencies introduced by a parsing action, we present our algorithm in Figure 6.6. The

final inside equation and the initial outside equation incorporate the loss function for

all derivations having a particular F-score, enabling us to obtain the desired expecta-

tions. A simple modification of the goal equations enables us to optimise precision,

recall or a weighted F-measure. Figure 6.4 illustrates the inside pass of this algorithm.

1 Note that this notation only denotes that there are n correct dependencies and d dependencies
overall for a parse leading to Ai, j, the items Ai, j,n,d introduced later are for a different dynamic program.
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time1 flies2 like3 an4 arrow5

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5,4,4

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

GOAL items Ai,j,n,dF1 =
2 × 4

4 + 4

(a) Correct parse

items Ai,j,n,d

time1 flies2 like3 an4 arrow5

NP3,5,1,1

NP0,2,0,1

S\NP3,5,1,2

S0,5,1,4

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0 (S\NP)/NP2,3,0,0NP0,1,0,0

GOAL F1 =
2 × 1

4 + 4

(b) Incorrect parse

Figure 6.4: Illustration of the inside pass for a correct (a) and an incorrect (b) parse

using the state-split algorithm in Figure 6.6. The items in the hypergraph keep track of

the dependencies introduced and the loss is computed when transitioning to the GOAL

state using the F-measure function F1. The graphs simplify the computation when

transitioning to the GOAL state, which is actually I(S0,L,n,d)(1−F1), as in Figure 6.6.
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Figure 6.5: Example of flexible dependency realisation in CCG: The C&C parser (Clark

and Curran, 2007) creates dependencies arising from coordination once all conjuncts

are found and treats “and” as the syntactic head of coordinations. The coordination rule

(Φ) does not yet establish the dependency “and - pears” (dotted line); it is the backward

application (<) in the larger span, “apples and pears”, that establishes it, together with

the dependency “and - pears”. CCG also deals with unbounded dependencies which

potentially lead to more dependencies than words (Steedman, 2000); in this example a

unification mechanism creates the dependencies “likes - apples” and “likes - pears” in

the forward application (>). For further examples and a more detailed explanation of

the mechanism as used in the C&C parser refer to Clark et al. (2002).

To analyse the complexity of this algorithm, we must ask: how many pairs 〈n,d〉
can be incident at each item? A CCG parser does not necessarily return one depen-

dency per word (§2.1.2) or see Figure 6.5, so d is not necessarily equal to the sentence

length L as it might be in many dependency parsers, though it is still bounded by O(L).

However, it is sufficiently uncommon that d is much larger than L and so we expect all

parses of a sentence, good or bad, to have close to L dependencies; hence we expect

the range of d to be constant on average. Furthermore, n will be bounded from below

by zero and from above by min(|y|, |y′|). Hence the set of all possible F-measures for

all possible parses is bounded by O(L2). Following McAllester (1999), we can see

from inspection of the free variables in Fig. 6.6 that the algorithm requires worst-case

O(L7) time complexity, and worse-case O(L4) space complexity.

F-Measure-Augmented Expectations at the Corpus Level. In order to compute ex-

act corpus-level expectations for softmax-margin using F-measure, we need to add an

additional transition before reaching the GOAL item in our original program. However,

in order to reach it, we must parse every sentence in the corpus, associating statistics

of aggregate 〈n,d〉 pairs for the entire training set in intermediate symbols Γ(1)...Γ(m)
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I(Ai,i+1,n,d) = w(ai+1⇒ A) iff n = n+(ai+1⇒ A), d = d+(ai+1⇒ A)

I(Ai, j,n,d) = ∑
k,B,C

∑
{n′,n′′:n′+n′′+n+(BC⇒A)=n},

{d′,d′′:d′+d′′+d+(BC⇒A)=d}

I(Bi,k,n′,d′)I(Ck, j,n′′,d′′)w(BC⇒ A)

I(GOAL) =∑
n,d

I(S0,L,n,d)

(
1− 2n

d + |y|

)
O(S0,L,n,d) =

(
1− 2n

d + |y|

)
O(Ai, j,n,d) = ∑

k,B,C
∑

{n′,n′′:n′−n′′−n+(AB⇒C)=n},

{d′,d′′:d′−d′′−d+(AB⇒C)=d}

O(Ci,k,n′,d′)I(B j,k,n′′,d′′)w(AB⇒C)+

∑
k,B,C

∑
{n′,n′′:n′−n′′−n+(BA⇒C)=n},

{d′,d′′:d′−d′′−d+(BA⇒C)=d}

O(Ck, j,n′,d′)I(Bk,i,n′′,d′′)w(BA⇒C)

Figure 6.6: State-split inside and outside recursions for computing softmax-margin with

F-measure.
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with the following inside recursions.

I(Γ(1)
n,d) = I(S(1)

0,|x(1)|,n,d)

I(Γ(`)
n,d) = ∑

{n′,n′′:n′+n′′=n},

{d′,d′′:d′+d′′=d}

I(Γ(`−1)
n′,d′ )I(S

(`)

0,|x(l)|,n′′,d′′)

I(GOAL) = ∑
n,d

I(Γ(m)
n,d )

(
1− 2n

d + |y|

)

where |xi| is the number of words in sentence xi. Outside recursions follow straightfor-

wardly. Implementation of this algorithm would require substantial distributed com-

putation or external data structures, so we did not attempt it.

6.2.2 Approximate Loss Functions

We will also consider approximate but more efficient alternatives to our exact algo-

rithms. The idea is to use cost functions which only utilise statistics available within

the current local structure. We borrow the approximate precision loss function used

by Taskar et al. (2004) which tracks constituent errors in a context-free parser; in our

setting it simply tracks dependency errors. Furthermore, we devise two more cost

functions to approximate recall and F-measure on CCG dependency structures.

Let T (y) be the set of parsing actions required to build parse y. Our decomposable

approximation to precision simply counts the number of incorrect dependencies using

the local dependency counts, n+(·) and d+(·).

DecP(y) = ∑
t∈T (y)

d+(t)−n+(t) (6.8)

To compute our approximation to recall we require the number of gold dependencies,

c+(·), that should be introduced by a particular parsing action. A gold dependency is

due to be recovered by a parsing action if its head lies within one child span and its

dependent within the other child span. This yields a decomposed approximation to

recall that counts the number of missed dependencies.

DecR(y) = ∑
t∈T (y)

c+(t)−n+(t) (6.9)

Unfortunately, the flexible handling of dependencies in CCG complicates our formula-

tion of c+, rendering it slightly more approximate. The unification mechanism of CCG
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time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5    

GOAL

DecF1(1,1)

DecF1(1,1)

DecF1(1,1)

DecF1(1,1)

items Ai,j

Figure 6.7: Illustration of the inside pass when computing expectations with approx-

imate F-measure DecF1. The inside value of every item is augmented by the loss

function DecF1.

sometimes causes dependencies to be realised later in the derivation, at a point when

both the head and the dependent are in the same span, violating the assumption we

use to compute c+ (see again Figure 6.5). Exceptions like this can cause mismatches

between n+ and c+. We set c+ = n+ whenever c+ < n+ to account for these occa-

sional discrepancies. This assumption is not correct but it allows us to compute the

decomposed recall loss function.

Finally, we obtain a decomposable approximation to F-measure.

DecF1(y) = DecP(y)+DecR(y) (6.10)

Figure 6.7 illustrates the inside pass when computing expectations for a single

derivation. In contrast to the exact sentence-level loss functions (§6.2.1), the approx-

imate loss functions do not take into account the entire structure, e.g., the parse or

corpus, but rather only local dependency counts incident at a particular item. For a

parse with incorrect dependencies, the exact loss functions will augment the marginals

of all items part of the parse equally. However, the local loss functions will focus

entirely on the incorrect items, rewarding the correct items and penalising only the

incorrect ones.
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6.3 Experiments

We begin by evaluating task-specific training for parsing alone and then apply it to

our integrated model (Chapter 5). In particular, we first evaluate a simple baseline

approach which uses the standard likelihood objective function (§6.3.1). We then

evaluate the performance of our exact algorithms for F-measure, precision and re-

call (§6.3.2). Next we compare the exact algorithms against approximations (§6.3.3).

Finally, we apply task-specific training methods to our integrated supertagging and

parsing model (§6.3.4).

Our experimental setup is identical to Chapter 5 which follows §3.3.3: We use the

C&C parser (Clark and Curran, 2007) and its supertagger (Clark, 2002). Our baseline

is the hybrid dependency model of Clark and Curran (2007), which contains features

over both normal-form derivations and CCG dependencies. Training requires calcu-

lation of feature expectations over packed charts of derivations and we trained our

models with the parser’s L-BFGS trainer (§3.4). Similar to before we test with both

adaptive supertagging (AST) and reverse adaptive supertagging (Reverse) beam set-

tings (§5.1). The coverage of our parsers is again identical for all parsers since we do

not vary the training and test beams (99.22% on section 00 and 99.63% on section 23).

6.3.1 Training with Maximum F-measure Parses

So far we discussed how to optimise towards task-specific metrics via changing the

training objective. In our first experiment we change the data on which we optimise

CLL. This is a baseline to our later experiments, attempting to achieve the same effect

by simpler means. Specifically, we use the algorithm of Huang (2008), introduced

in §5.2.1, to generate oracle F-measure parses for each sentence. Updating towards

these oracle parses corrects the reachability problem in standard CLL training which

prevents the use of all training data.

To make CLL training feasible, the training forests are pruned using the supertag-

ger. Unfortunately, pruning sometimes removes the correct parse required by the ob-

jective function. Clark and Curran (2007) mitigate the effects of pruning by restoring

gold supertags that have been removed. However, this still only results in a training

data utilisation of 91.5% (see §3.4). A potential disadvantage of restoring pruned su-

pertags is to bias the model by training it in an idealised setting not available at test

time. Using oracle parses corrects this bias while permitting nearly 99% training data

utilisation. The labelled F-score of the oracle parses is 98.1%. Despite expectations
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of our method improving accuracy, the results (Table 6.1) show no effect. However, it

does serve as a useful baseline.

LF LP LR UF UP UR Data Util (%)

Baseline 87.40 87.85 86.95 93.11 93.59 92.63 91.5%

Max-F Parses 87.46 87.95 86.98 93.09 93.61 92.57 98.7%

CCGbank+Max-F 87.45 87.96 86.94 93.09 93.63 92.55 98.9%

Table 6.1: Performance on section 00 of CCGbank when comparing models trained

with treebank-parses (Baseline) and maximum F-score parses (Max-F) using adaptive

supertagging as well as a combination of CCGbank and Max-F parses. Evaluation

is based on labelled and unlabelled F-measure (LF/UF), precision (LP/UP) and recall

(LR/UR).

6.3.2 Training with the Exact Algorithm

We first tested our assumptions about the feasibility of training with our exact algo-

rithm by measuring the amount of state-splitting. Figure 6.8 plots the average number

of splits per item against the relative span-frequency, i.e., the word span size of an

item; the statistics are based on a typical set of training forests containing nearly 7.6

billion items.2 The increase in the number of splits is polynomial in the span size but

similarly does the number of spans decrease in the number of splits. Hence the small

number of items with a high number of splits is balanced by a large number of spans

with only a few splits: The highest number of splits per span observed with our setup

was 4888 but we find that the average number of splits lies at 44. Encouragingly, this

enables experimentation in all but very large scale settings.

Figure 6.9 shows the distribution of n and d pairs across all split-states in the train-

ing corpus; since n, the number of correct dependencies, over d, the number of all

recovered dependencies, is precision, the graph shows that only a minority of states

have either very high or very low precision. The range of values suggests that the

softmax-margin criterion will have an opportunity to substantially modify the expec-
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Figure 6.8: Average number of state-splits per span length as introduced by a sentence-

level F-measure loss function. The statistics are averaged over the training forests

generated using the settings described in §6.3.
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tations, hopefully to good effect.

We next turn to the question of optimisation with these algorithms. Due to the

significant computational requirements, we used the computationally less intensive

normal-form model of Clark and Curran (2007) as well as their more restrictive training

beam settings (see §3.3.3). We train on all sentences of the training set as above and

test with AST.

In order to provide greater control over the influence of the loss function, we in-

troduce a multiplier τ, which simply amends the second term of the objective function

(6.3) to:

log ∑
y∈Y (xi)

exp{θT f (xi,y)+ τ× `(yi,y)}

Figure 6.10 plots performance of the exact loss functions across different settings

of τ on various evaluation criteria, for models restricted to at most 3000 items per chart

at training time to allow rapid experimentation with a wide parameter set. Even in this

constrained setting, it is encouraging to see that each loss function performs best on the

criteria it optimises. The precision-trained parser also does very well on F-measure;

this is because the baseline parser has better precision accuracy than recall accuracy.

6.3.3 Exact vs. Approximate Loss Functions

With these results in mind, we conducted a comparison of parsers trained using our

exact and approximate loss functions. Table 6.3 and Table 6.4 compare their perfor-

mance head to head when restricting training chart sizes to 100,000 items per sentence,

the largest setting our computing resources allowed us to experiment with. The results

confirm that the loss-trained models improve over a likelihood-trained baseline, and

furthermore that the exact loss functions seem to have the best performance. However,

the approximations are extremely competitive to their exact counterparts. Moreover,

the high efficiency of approximate loss functions makes them attractive for experimen-

tation on a larger-scale.

Training time with exact loss functions increases only 30-fold compared to stan-

dard CLL training (Table 6.2), despite much higher worst-case theoretical complexity

(§6.2.1). On the other hand, memory or space requirements only triple, mostly due to

an efficient implementation; there is no significant change in either time or space for

2We reported a lower figure in Auli and Lopez (2011c) due to an error in the quantification of the
forest-sizes, however, the analysis based on the forests remains unchanged.
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Figure 6.10: Performance of exact cost functions optimising F-measure, precision and

recall in terms of (a) labelled F-measure, (b) precision, (c) recall and (d) supertag ac-

curacy across various settings of τ on the development set.
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Time (h) Space (Gb)

CLL 0.38 56

DecF1 0.41 56

F1 11.4 169

Table 6.2: Time and space requirements for standard conditional log-likelihood (CLL)

training versus softmax-margin with approximate (DecF1) and exact F-measure loss

functions (F1). Time is based on the duration of optimisation when using 64 Intel-Xeon

cores of a compute-cluster; this is not the accumulative training time. However, space is

accumulated across all cores and it is equal for both CLL and F1 because the additional

statistics require so little space that no additional memory needed to be allocated.

training with approximate loss functions compared to standard CLL training.

Table 6.5 and Table 6.6 show the performance of the approximate losses with the

hybrid dependency model and the usual training beams (§3.4). One striking result

is that the softmax-margin trained models coax more accurate parses from the larger

search space, in contrast to the likelihood-trained models. Our best loss model im-

proves the labelled F-measure by over 0.9% on the test set.

How does an F-measure optimised model perform on exact match? The training

methods we presented may result in poor accuracy on other measures than the one it

has been specifically optimised. Table 6.7 confirms that this is not the case.

6.3.4 Combination with Integrated Supertagging and Parsing

As a final experiment, we embed our loss-trained model into the integrated model

described in Chapter 5. We use the same experimental setup as in Chapter 5 with

the piecewise estimator and at test time we use belief propagation for inference. For

softmax-margin, we combine a parsing model trained with F1 and a supertagger trained

with Hamming loss (SA), i.e., given the true tag-sequence t1 . . . tL and a predicted tag-
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LF LP LR UF UP UR

CLL 86.76 87.16 86.36 92.73 93.16 92.30

DecP 87.18 87.93 86.44 92.93 93.73 92.14

DecR 87.31 87.55 87.07 93.00 93.26 92.75

DecF1 87.27 87.78 86.77 93.04 93.58 92.50

P 87.25 87.85 86.66 92.99 93.63 92.36

R 87.34 87.51 87.16 92.98 93.17 92.80
F1 87.34 87.74 86.94 93.05 93.47 92.62

Table 6.3: Development set performance of exact and approximate loss functions and

the baseline, conditional log-likelihood (CLL): Approximate losses are decomposable

precision (DecP), recall (DecR) and F-measure (DecF1); exact losses are exact preci-

sion (P), recall (R) and F-measure (F1). Evaluation is based on labelled and unlabelled

F-measure (LF/UF), precision (LP/UP) and recall (LR/UR).

LF LP LR UF UP UR

CLL 87.46 87.80 87.12 92.85 93.22 92.49

DecP 87.75 88.34 87.17 93.04 93.66 92.43

DecR 87.57 87.71 87.42 92.92 93.07 92.76

DecF1 87.69 88.10 87.28 93.04 93.48 92.61

P 87.76 88.23 87.30 93.06 93.55 92.57

R 87.57 87.62 87.51 92.92 92.98 92.86
F1 87.71 88.01 87.41 93.02 93.34 92.70

Table 6.4: Test set performance of exact and approximate loss functions and conditional

log-likelihood (cf. Table 6.3).

sequence t ′1 . . . t
′
L we have

SA(y,y′) = τ×
L

∑
i=1
|δ(ti, t ′i)| (6.11)

where δ(x,y) is the Kronecker-delta returning 1 if x = y and 0 otherwise; τ is the mul-

tiplier we introduced in §6.3.2. Table 6.8 and Table 6.9 show the results: we observe

a gain of up to 1.5% in labelled F-measure and 0.9% in unlabelled F-measure on the

test set. The loss functions prove their robustness by improving the more accurate
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AST Reverse

LF UF ST LF UF ST

CLL 87.38 93.08 94.21 87.36 93.13 93.99

DecP 87.35 92.99 94.25 87.75 93.25 94.22

DecR 87.48 93.00 94.34 87.70 93.16 94.30

DecF1 87.67 93.23 94.39 88.12 93.52 94.46

Table 6.5: Development set performance of decomposed loss functions in large-scale

training setting. Evaluation is based on labelled and unlabelled F-measure (LF/UF) and

supertag accuracy (ST).

AST Reverse

LF UF ST LF UF ST

CLL 87.73 93.09 94.33 87.65 93.06 94.01

DecP 88.10 93.26 94.51 88.51 93.50 94.39

DecR 87.66 92.83 94.38 87.77 92.91 94.22

DecF1 88.09 93.28 94.50 88.58 93.57 94.53

Table 6.6: Test set performance of decomposed loss functions in large-scale training

setting (cf. Table 6.5).

section 00 (dev) section 23 (test)

AST Reverse AST Reverse

LM UM LM UM LM UM LM UM

CLL 36.93 38.20 36.93 38.25 37.66 39.28 37.99 39.62

DecF1 37.78 38.94 38.46 39.62 38.03 39.41 39.07 40.33

Table 6.7: Performance in terms of labelled and unlabelled exact match (LM/UM).
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AST Reverse

LF UF ST LF UF ST

CLL 87.38 93.08 94.21 87.36 93.13 93.99

BP 87.67 93.26 94.43 88.35 93.72 94.73

+DecF1 87.90 93.40 94.52 88.58 93.88 94.79
+SA 87.73 93.28 94.49 88.40 93.71 94.75

Table 6.8: Development set performance of integrated parsing and supertagging with

belief propagation (BP); using decomposed-F1 (DecF1) as parser-loss function and

supertag-accuracy (SA) as loss function for the supertagger.

AST Reverse

LF UF ST LF UF ST

CLL 87.73 93.09 94.33 87.65 93.06 94.01

BP 88.25 93.33 94.60 88.86 93.75 94.84

+DecF1 88.32 93.32 94.66 89.15 93.89 94.98

+SA 88.47 93.48 94.71 89.25 93.98 95.01

Table 6.9: Test set performance of integrated parsing and supertagging with belief prop-

agation (cf. Table 6.8).

integrated models up to 0.4% in labelled F-score.

Table 6.10 and Table 6.11 shows results with automatic part-of-speech tags and

a direct comparison with the Petrov parser trained on CCGbank (Fowler and Penn,

2010), which we outperform on all metrics.

Finally, we compare the models proposed in this thesis in terms of efficiency and

accuracy on the test set (Figure 6.11). The results can be clustered into two main

groups: Parsing with adaptive supertagging (AST) and parsing with reverse adap-

tive supertagging (Rev). The former is preferable when speed is important and when

less accurate parses can be tolerated. Reverse AST is preferable when accuracy is

paramount and when lower speed is acceptable. Generally, the softmax-margin-trained

integrated model using belief propagation (BP+SMM) offers the best tradeoff between
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Figure 6.11: Accuracy versus efficiency for various models proposed in this thesis with

adaptive supertagging (AST) and reverse AST (Rev) on the test set. We show our

baseline model (Clark and Curran 2007; C&C ’07), parsing models trained with approx-

imate F1 (DecF1), belief propagation (BP), dual decomposition with softmax-margin

(DD+SMM) and belief propagation with softmax-margin (BP+SMM). All BP models were

run for at most one iteration, they are slower than the baseline because of the additional

overhead of computing the sequence-model probabilities in the combined model. DD

models were generally run for at most q = 25 but DD-SMM AST was only run for at

most q = 10 because performance already peaked earlier in the dev set.
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LF LP LR UF UP UR

CLL 85.53 85.73 85.33 91.99 92.20 91.77

Petrov I-5 85.79 86.09 85.50 92.44 92.76 92.13

BP 86.45 86.75 86.17 92.60 92.92 92.29

+DecF1 86.73 87.07 86.39 92.79 93.16 92.43
+SA 86.51 86.86 86.16 92.60 92.98 92.23

Table 6.10: Development set performance on automatically assigned POS tags. Petrov

I-5 is based on the parser output of Fowler and Penn (2010); evaluation is based on

sentences for which all parsers returned an analysis (1834 sentences for section 00).

LF LP LR UF UP UR

CLL 85.74 85.90 85.58 91.92 92.09 91.75

Petrov I-5 86.01 86.29 85.73 92.34 92.64 92.04

BP 86.84 87.08 86.61 92.57 92.82 92.32

+DecF1 87.08 87.37 86.78 92.68 93.00 92.37

+SA 87.20 87.50 86.90 92.76 93.08 92.44

Table 6.11: Test set performance on automatically assigned POS tags (cf. Table 6.10);

evaluation is based on sentences for which all parsers returned an analysis (2323 sen-

tences for section 23).

speed and accuracy for each of the two groups. BP+SMM is closely followed by a

softmax-margin-trained dual decomposition model (DD+SMM), which performs well

in the reverse setting but which is significantly slower in the AST setting. The graph

also clearly shows how the F-measure loss-trained parser (DecF1) improves signifi-

cantly over the baseline (C&C), particularly so in the reverse setting.

6.4 Conclusions

In this chapter we demonstrated that training the individual components of our inte-

grated supertagging and parsing model towards task-specific metrics improves accu-

racy on both tasks. The softmax-margin objective is simple and also very effective in

training individual log-linear parsers. We have shown that it is possible to compute

exact sentence-level losses under standard parsing metrics, not only approximations
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(Taskar et al., 2004). This enabled us to analyse the effectiveness of these approxima-

tions, and it turns out that they are excellent substitutes for exact loss functions. Indeed,

the approximate losses are as easy to use as standard conditional log-likelihood.

Empirically, softmax-margin training improves parsing performance across the

board, beating the state-of-the-art CCG parsing model of Clark and Curran (2007)

by up to 0.9% labelled F-measure. This method does not sacrifice accuracy on other

evaluation metrics such as exact match, in fact, we even achieve an improvement of

1.0%/0.7% labelled and unlabelled exact match. It also proves robust, improving our

already strong integrated supertagging and parsing model. In particular, we found that

for applications where speed is crucial, adaptive supertagging with softmax-margin

and belief propagation is most effective, improving accuracy by up to 0.7% labelled

F-measure over the baseline C&C parser, while parsing at virtually the same speed of

about 100 sentences per second. When accuracy is more important, then the reverse

search setting is preferable but improvements come at the cost of lower speed. Us-

ing this setting, our final result of 89.3%/94.0% labelled and unlabelled F-measure is

the best result reported for CCG parsing accuracy to date, beating the original C&C

baseline by up to 1.5%.



Chapter 7

Conclusions and Future Work

Natural language processing is about modelling tasks dealing with human language.

Modern approaches usually rely on probabilistic models which require optimisation.

Predicting solutions with the learned models demands efficient search. This thesis

has attacked all of these areas for the task of parsing with Combinatory Categorial

Grammar (CCG; Steedman 2000). We made the following contributions:

• We have introduced a new and principled approach to supertagging and parsing

which results in the most accurate CCG parser in the literature to date, raising

parsing accuracy on CCGbank from 87.7% to 89.3% labelled F-measure with

gold part-of-speech tags.

• We demonstrated that the interaction between supertagging and parsing can be

better exploited in an integrated model rather than simply using the supertagger

to prune the parser search space.

• We presented the first empirical comparison of dual decomposition and loopy

belief propagation on a structured prediction task. We demonstrated that their

accuracy is nearly identical in our setting. Moreover, and despite a lack of for-

mal guarantees, we found that the vast majority of initial solutions obtained by

belief propagation are exact, whereas the same level of exactness requires many

iterations with dual decomposition.

• We presented novel dynamic programs which can compute loss functions that

exactly correspond to F-measure. Furthermore, we demonstrated that approxi-

mations to exact sentence-level losses are excellent substitutions. These approx-

imate loss functions are as easy to use as standard conditional log-likelihood

133
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while substantially improving accuracy.

• We showed that, while improving efficiency, supertagging can significantly lower

the upper bound on parsing accuracy.

• We demonstrated the viability of A* as a search algorithm for parsing with more

expressive grammar formalisms such as CCG, and what we believe to be the first

evaluation of A* parsing on the more realistic but more stringent metric of CPU

time.

7.1 Future Work

An obvious extension to the work in this thesis is to add POS-tagging into our inte-

grated model in order to have a single model for all tasks involved in CCG parsing.

POS tagging is another sequence modelling task whose decisions influence both su-

pertagging and parsing. Curran et al. (2006) demonstrated that combined POS-tagging

and supertagging substantially increases supertagging accuracy and it is most likely

that a model integrating all steps also improves parsing accuracy. Curran et al. (2006)

equip the supertagger with real-valued features for the POS-tagger posteriors, although

there has been work on combining multiple sequence models using loopy belief prop-

agation (Sutton et al., 2004) in line with our approach. A single model may use these

methods for sequence models within our integrated model.

Currently, and for purely practical reasons, the supertagger only models frequent

lexical categories with reportedly minimal effect on parsing coverage (Clark and Cur-

ran, 2007). One could imagine a principled approach to decide which categories to

model by deriving a grammar that is optimal for both parsing and supertagging. Such

a method should capture interesting predicate-argument relations but at the same time

enforce sparsity over the set of lexical categories. Grammar induction methods from

the tree substitution grammar literature such as Cohn et al. (2010) may provide a start-

ing point in this setting.

In Chapter 4 we showed that gains with A* do not come as easily for CCG as

for context-free grammars. We experimented with heuristics that were successful for

context-free grammars (Klein and Manning, 2003; Pauls and Klein, 2009a) and simple

grammar projections that removed different levels of lexicalisation. Future work may

explore the idea of collapsing actual CCG categories into coarser classes to obtain

grammar projections similar to those of Petrov et al. (2006).
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Chapter 6 presented algorithms for optimising F-measure for parsing models. We

experimented with sentence-level F-measure and gave the algorithm for computing F-

measure augmented expectations on the corpus-level but did not experiment with it.

This algorithm requires larger computing resources but with adequate scaling, experi-

mentation is likely to be feasible.

The efficient inference algorithms presented in Chapter 5 could be used to add fur-

ther higher-order parsing features to our model. Essentially, such features are defined

over properties of structures outside the current local sub-tree, such as grandparent-

features. This would be the first application of such methods to a CCG parser and

would be in line with Smith and Eisner (2008) who demonstrated the viability of loopy

belief propagation in a dependency parser, or Koo et al. (2010) who used dual decom-

position for the same task.

All presented methods in this thesis are general and future work may apply our

integrated parsing and tagging approach to other grammars with large non-terminal

sets such as the context-free parser of Petrov et al. (2006). Similar to our setting,

this parser has thousands of non-terminals but uses a tree-based coarse-to-fine search.

An alternative strategy may be to use a sequence model to select a high-precision

set of lexical types to make search more efficient. Furthermore, the two models can

be integrated with the methods presented in this thesis. Equally, Lexicalised Tree

Adjoining Grammars (Schabes, 1992) have also very large sets of supertags and are a

further candidate for integrated supertagging and parsing.

Finally, our algorithms for optimising F-measure carry over to phrase-structure

grammars without modification. In this setting, the algorithm simply keeps track of

constituents instead of dependencies and thus can be used to optimise constituency-

based F-measure, recall or precision.
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