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Sequence to Sequence Learning

sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and fixed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-
dimensional vector representation, and then to use another LSTM to extract the output sequence
from that vector (fig. 1). The second LSTM is essentially a recurrent neural network language model
[28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully
learn on data with long range temporal dependencies makes it a natural choice for this application
due to the considerable time lag between the inputs and their corresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entire input sentence to vector, and is very similar to Cho et al. [5].
Graves [10] introduced a novel differentiable attention mechanism that allows neural networks to
focus on different parts of their input, and an elegant variant of this idea was successfully applied
to machine translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another
popular technique for mapping sequences to sequences with neural networks, although it assumes a
monotonic alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task,
we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 380M parameters each) using a simple left-to-right beam-search decoder. This is
by far the best result achieved by direct translation with large neural networks. For comparison,
the BLEU score of a SMT baseline on this dataset is 33.30 [29]. The 34.81 BLEU score was
achieved by an LSTM with a vocabulary of 80k words, so the score was penalized whenever the
reference translation contained a word not covered by these 80k. This result shows that a relatively
unoptimized neural network architecture which has much room for improvement outperforms a
mature phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline
by 3.2 BLEU points and is close to the previous state-of-the-art (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not the target sentences in the training and test
set. By doing so, we introduced many short term dependencies that made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different
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Figure from: Sutskever et al., 2014, "Sequence to Sequence Learning with Neural Networks" 

Encoder LSTM Decoder LSTM

• Encode source sequence, and decode target sequence with RNNs  
(Sutksever et al., 2014) 

• Attention: choose relevant encoder states (Bahdanau et al., 2014)



• Applications: translation, summarization, parsing, dialogue, ... 
• Translation, e.g., "La maison de Léa." -> "Léa's house." 

• "Models basis for 25% of posters at ACL",  
Lapata at keynote ACL'17

Sequence to Sequence Learning
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Sequence to Sequence Learning
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Sequence to Sequence Learning
• Illustrate that NMT is an active research field 
• Sutskever et al., Bahdanau, Baidu, GNMT, ConvS2S, Transformer, 

DeepL...
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Overview
• Gated convolutions for Language Modeling  
• Convolutional Sequence to Sequence Learning 
• Analyzing beam search for seq2seq
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Gated Convolutional Models for 
Language Modeling
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Language Modeling
• Estimate probability of a sequence of 

words 

• Good language models help in speech 
(Mikolov et al, 2010) and translation 

• LSTMs achieve state-of-the-art 
performance by processing 
sentences left to right 9

P (w0, . . . , wN) = P (w0)
N∏

i=1

P (wi|w0, . . . , wi−1)



CNNs & RNNs
Vision → Convolutional neural networks  

NLP/Speech → Recurrent neural networks 
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CNNs & RNNs
Vision → Convolutional neural networks  

NLP/Speech → Recurrent neural networks 
• Architectures complex: bi-directional, reverse processing 
• Fail to model long-range dependencies in language: need attention 
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CNNs & RNNs
Vision → Convolutional neural networks  

NLP/Speech → Recurrent neural networks 
• Architectures complex: bi-directional, reverse processing 
• Fail to model long-range dependencies in language: need attention 

This talk: model sequences well without RNNs 
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What is a CNN?
• a linear projection taking several input vectors (embeddings, hidden 

states)  
• that maps them to a single output vector (of same or different size) 
• which is applied repeatedly to the input sequence at a given stride 

(=1 here) to yield an output sequence 

the tall building … . 
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CNNs for Sequence Modeling
• Hierarchical: bottom-up vs. left-right 
• Homogeneous: all elements processed in same way 
• Efficient: parallelizable over number of sequences & time dimension

the tall  
… 

building . 
vs.

the tall building … . 
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CNNs for Sequence Modeling
• In practice:  

• dependencies are not arbitrarily long 
• e.g. Dauphin et al. ICML’17 

• CNNs are much more efficient than LSTMs on GPU 
• e.g. Baidu DeepBench, github.com/baidu-research/DeepBench  ’16
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Recurrent Neural Network

The cat jumps far
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Recurrent Neural Network

The cat jumps far

cat jumps far .
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Recurrent Neural Network

• O(T) sequential steps 
• Recurrent connection causes 

vanishing gradient 
• Are the recurrent connections 

necessary?

The cat jumps far

cat jumps far .

 16



Multi-Layer Perceptron

The cat jumps far
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Multi-Layer Perceptron

• O(1) sequential steps 
• Proposed by (Bengio et al, 2001) 
• Inefficient  because no 

computation is shared between 
time steps 

• Bad experimental results

The cat jumps far

 17



Multi-Layer Perceptron

• O(1) sequential steps 
• Proposed by (Bengio et al, 2001) 
• Inefficient  because no 

computation is shared between 
time steps 

• Bad experimental results

The cat jumps far

cat jumps far .

 17



Convolutional Neural Network

The cat jumps far
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Convolutional Neural Network

• O(1) sequential steps 
• Incrementally build context of 

context windows

The cat jumps far
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Convolutional Neural Network

• O(1) sequential steps 
• Incrementally build context of 

context windows

The cat jumps far

cat jumps far .
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Convolutional Neural Network

• O(1) sequential steps 
• Incrementally build context of 

context windows 
• Builds hierarchical structure

The cat jumps far

cat jumps far .
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Gated Convolutional Neural Network
• Processes a sentence with a set of 

convolutions 
• Each convolution learns higher level 

features 
• Gates filter information to propagate 

up the hierarchy
GGG

GGG

SSS
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Gated Linear Unit
• The gated linear unit can be seen as 

a multiplicative skip connection 
• We find this approach to gating 

improves performance

previous layer  
or embeddings

Residual 
connection

Gated Linear  
Unit

dd
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Gated Linear Unit
• The gated linear unit can be seen as 

a multiplicative skip connection 
• We find this approach to gating 

improves performance

previous layer  
or embeddings

Residual 
connection

Gated Linear  
Unit
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Training
• We use SGD with Nesterov's momentum and weight normalization 

(Salimans & Kingma, 2016) 
• Clipping for convnets (Pascanu et al. 2013) 
• Adaptive Softmax (Grave et al, 2016) for very large vocabularies
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Datasets
• Google billion words (Chelba et al, 2013):  

• ~800k vocabulary with ~800M tokens 
• independent sentences (~20 tokens)   

• WikiText-103 (Bradbury et al, 2016) 
• ~200k vocabulary with ~100M tokens  
• wikipedia articles (~4000 tokens)  
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Results: Google billion words

• GatedCNN manages to match the LSTM with comparable output 
approximation and computational budget for training
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Results: Google billion words

• GatedCNN manages to match the LSTM with comparable output 
approximation and computational budget for training

 24



Results: Wikitext-103

• SOTA accuracy despite limited context size (25 & 32 words)
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Speed

• Throughput is the number of tokens per second 
• Responsiveness is the number of sequential tokens per second

 26
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Gating

• Gated linear units (GLU in red) converge faster 
• GTU is LSTM style gating of (Oord et al, 2016)

WikiText-103 Google Billion Words
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Context

• Competitive performance can be achieved with context of less than 
40 tokens.

WikiText-103 Google Billion Words
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Training algorithm

• Clipping and weight normalization speed up convergence by allowing 
large learning rates without divergence
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Summary
• Fully convolutional model of language that is competitive with LSTMs. 
• Demonstrated impact of gating mechanisms for this task. 
• Shown faster response times with this approach.
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Convolutional  
Sequence to Sequence Learning

 31



Convolutional Sequence to Sequence Learning
• non-RNN models can outperform very well-engineered RNNs on large 

translation benchmarks 
• Multi-hop attention 
• Approach with very fast inference speed: >9x faster than RNN 

Code and pre-trained models available! 
Lua/Torch: https://github.com/facebookresearch/fairseq  
PyTorch:    https://github.com/facebookresearch/fairseq-py
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Previous work
• ByteNet (Kalchbrenner et al. 2016)  

Characters, dilated convolutions, no attention 

• Quasi-RNNs (Bradburry et al., 2016) 
Recurrent pooling of CNN outputs, but still an RNN 

• Convolutional encoders (Gehring et al., 2016)  
CNN encoder, LSTM decoder
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• Similar to Dauphin et al. '17 
• Input: word + position embeddings: 

1, 2, 3, ... 
• Weight Normalization (Salimans & 

Kingma, 2016) 
• No batch or layer norm: 

initialization (He at al. '15) and  
scale by sqrt(1/2)  

• Repeat N times

Convolutional S2S: Encoder

previous layer  
or embeddings

 42



• Similar to Dauphin et al. '17 
• Input: word + position embeddings: 

1, 2, 3, ... 
• Weight Normalization (Salimans & 

Kingma, 2016) 
• No batch or layer norm: 

initialization (He at al. '15) and  
scale by sqrt(1/2)  

• Repeat N times

Convolutional S2S: Encoder

previous layer  
or embeddings

 42

Convolution



• Similar to Dauphin et al. '17 
• Input: word + position embeddings: 

1, 2, 3, ... 
• Weight Normalization (Salimans & 

Kingma, 2016) 
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• Similar to Dauphin et al. '17 
• Input: word + position embeddings: 

1, 2, 3, ... 
• Weight Normalization (Salimans & 

Kingma, 2016) 
• No batch or layer norm: 

initialization (He at al. '15) and  
scale by sqrt(1/2)  

• Repeat N times

Convolutional S2S: Encoder

previous layer  
or embeddings
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Convolution

Residual 
connection

Gated Linear  
Unit



• Input: word embeddings  
+ position embeddings: 1, 2, 3, ... 

• Causal convolution over generated 
sequence so far 

• Dot-product attention at every layer

Convolutional S2S: Decoder

 43
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• Attention in every decoder layer 
• Queries contain information about 

previous source contexts

Convolutional S2S: Multi-hop Attention 
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Convolutional S2S

Convolutional Sequence to Sequence Learning

inputs. Non-linearities allow the networks to exploit the
full input field, or to focus on fewer elements if needed.

Each convolution kernel is parameterized as W 2 R2d⇥kd,
bw 2 R2d and takes as input X 2 Rk⇥d which is a
concatenation of k input elements embedded in d dimen-
sions and maps them to a single output element Y 2 R2d

that has twice the dimensionality of the input elements;
subsequent layers operate over the k output elements of
the previous layer. We choose gated linear units (GLU;
Dauphin et al., 2016) as non-linearity which implement a
simple gating mechanism over the output of the convolu-
tion Y = [A B] 2 R2d:

v([A B]) = A⌦ �(B)

where A,B 2 Rd are the inputs to the non-linearity, ⌦ is
the point-wise multiplication and the output v([A B]) 2

Rd is half the size of Y . The gates �(B) control which
inputs A of the current context are relevant. A similar non-
linearity has been introduced in Oord et al. (2016b) who
apply tanh to A but Dauphin et al. (2016) shows that GLUs
perform better in the context of language modelling.

To enable deep convolutional networks, we add residual
connections from the input of each convolution to the out-
put of the block (He et al., 2015a).

hl
i = v(W l[hl�1

i�k/2, . . . , h
l�1
i+k/2] + blw) + hl�1

i

For encoder networks we ensure that the output of the con-
volutional layers matches the input length by padding the
input at each layer. However, for decoder networks we have
to take care that no future information is available to the de-
coder (Oord et al., 2016a). Specifically, we pad the input
by k � 1 elements on both the left and right side by zero
vectors, and then remove k elements from the end of the
convolution output.

We also add linear mappings to project between the embed-
ding size f and the convolution outputs that are of size 2d.
We apply such a transform to w when feeding embeddings
to the encoder network, to the encoder output zuj , to the fi-
nal layer of the decoder just before the softmax hL, and to
all decoder layers hl before computing attention scores (1).

Finally, we compute a distribution over the T possible next
target elements yi+1 by transforming the top decoder out-
put hL

i via a linear layer with weights Wo and bias bo:

p(yi+1|y1, . . . , yi,x) = softmax(Woh
L
i + bo) 2 RT

3.3. Multi-step Attention

We introduce a separate attention mechanism for each de-
coder layer. To compute the attention, we combine the cur-
rent decoder state hl

i with an embedding of the previous

Figure 1. Illustration of batching during training. The English
source sentence is encoded (top) and we compute all attention
values for the four German target words (center) simultaneously.
Our attentions are just dot products between decoder context rep-
resentations (bottom left) and encoder representations. We add
the conditional inputs computed by the attention (center right) to
the decoder states which then predict the target words (bottom
right). The sigmoid and multiplicative boxes illustrate Gated Lin-
ear Units.

target element gi:

dli = W l
dh

l
i + bld + gi (1)

For decoder layer l the attention alij of state i and source el-
ement j is computed as a dot-product between the decoder
state summary dli and each output zuj of the last encoder
block u:

alij =
exp

�
dli · z

u
j

�
Pm

t=1 exp
�
dli · z

u
t

�

The conditional input cli to the current decoder layer is a
weighted sum of the encoder outputs as well as the input
element embeddings ej (Figure 1, center right):

cli =
mX

j=1

alij(z
u
j + ej) (2)

This is slightly different to recurrent approaches which
compute both the attention and the weighted sum over zuj

• High training efficiency due to  
parallel computation in decoder 

• Cross Entropy objective 
• Very similar to ResNet models  

(Nesterov etc., He et al. '15) 
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Experimental Methodology
• Translation & Summarization 
• Large-scale tasks: 

• WMT'14 English-German (4.5M sentence pairs) 
• WMT'14 English-French (36M sentence pairs) 
• IWSLT'14 German-English (< 0.2M sentence pairs)

 46



WMT'14 English-German Translation

Vocabulary BLEU

CNN ByteNet (Kalchbrenner et al., 2016) Characters 23.75

RNN GNMT (Wu et al., 2016) Word 80k 23.12

RNN GNMT (Wu et al., 2016) Word pieces 24.61
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Vocabulary BLEU

CNN ByteNet (Kalchbrenner et al., 2016) Characters 23.75

RNN GNMT (Wu et al., 2016) Word 80k 23.12

RNN GNMT (Wu et al., 2016) Word pieces 24.61

ConvS2S BPE 40k 25.16

Transformer (Vaswani et al., 2017) Word pieces 28.4

ConvS2S: 15 layers in encoder/decoder (10x512 units, 3x768 units, 2x2048) 
Maximum context size: 27 words  47

More work on non-RNN models!



WMT'14 English-French Translation

Vocabulary BLEU

RNN GNMT (Wu et al., 2016) Word 80k 37.90

RNN GNMT (Wu et al., 2016) Word pieces 38.95
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Inference Speed on WMT'14 En-Fr

Hardware BLEU Time (s)

RNN GNMT (Wu et al., 2016) GPU (K80) 31.20 3028

RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322

RNN GNMT (Wu et al., 2016) TPU 31.21 384

ntst1213 (6003 sentences)  49
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RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322

RNN GNMT (Wu et al., 2016) TPU 31.21 384

ConvS2S, beam=5 GPU (K40) 34.10 587

ConvS2S, beam=1 GPU (K40) 33.45 327

ConvS2S, beam=1 GPU (GTX-1080ti) 33.45 142

ConvS2S, beam=1 CPU (48 cores) 33.45 142

ntst1213 (6003 sentences)  49



Text Summarization
Compress first sentence of a news article into a headline (Rush et al. 2016)

Rouge-1 Rouge-2 Rouge-L

RNN Likelihood optimized (Shen et al. 2016) 32.7 15.2 30.6

RNN Rouge-optimized (Shen et al. 2016) 36.5 16.6 33.4

RNN repeated words (Suzuki & Nagata, 2017) 36.3 17.3 33.9

ConvS2S 35.9 17.5 33.3

ConvS2S: 6 layers in encoder/decoder, nhid=256
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Summary
• Alternative architecture for sequence to sequence learning 
• Higher accuracy than models of similar size, despite fixed size context 
• Faster generation (9x faster on lesser hardware)

Code & pre-trained models:  
Lua Torch: http://github.com/facebookresearch/fairseq 

PyTorch: http://github.com/facebookresearch/fairseq-py
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Beam Search for Seq2Seq
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At test time, we want to generate from  

• sampling is easy, decomposability allows left to right sampling 

• MAP inference is hard  

• Beam approximates MAP inference

Generating from Seq2Seq
P (y|x) with y 2 {1, . . . , V }⇤

ŷ = argmaxyP (y|x) with y 2 {1, . . . , V }⇤

y ⇠ P (y|x) =
Y

t

P (yt|yt�1
1 , x)
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Beam Search
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On Search Space Size
• Effective vocabulary is rather small 
• e.g. vocabulary selection with alignment method (WMT’14 en-de)

Similar BLEU 55



On Search Space Size
• beam results are prominent  

• e.g. 20 time steps above 0.9 means more than 0.920 ' 1

8

Beam
Sampling
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Beam Search
• Q: Does it work? good approximation of MAP? 
• Q: Is it a good idea? Do we care about MAP?
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Beam Search
• Q: Does it work? good approximation of MAP? 
• Q: Is it a good idea? Do we care about MAP?
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Sample k times &  
choose by logrpob



Beam Search
• Q: Does it work? good approximation of MAP? 
• Q: Is it a good idea? Do we care about MAP?
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Sample k times &  
choose by BLEU



Not a Search Problem?
arXiv Aug’17

+0.4

Better model = better estimation not better search 



Sequence-Level Training
• Maximizing token likelihood does not consider BLEU 

Sequence Level Training with Recurrent Neural Networks
Marc-Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba - Nov 2015
[Reinforce, Williams 92][expected BLEU]

Sequence-to-Sequence Learning as Beam-Search Optimization
Sam Wiseman, Alexander M. Rush - June 2016
[learning as search optimization (LaSO), Daume and Marcu 2005][search BLEU]

Google's Neural Machine Translation System
Wu et al - Oct 2016
[close to Ranzato'15 + new reward][expected GLEU]

An Actor-Critic Algorithm for Sequence Prediction
Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, J. Pineau, A. 
Courville, Y. Bengio - July ’16
[actor-critic, Sutton'84][expected BLEU]
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Sequence-Level Training
IWSLT'14 de-en

         LL    Seq
Ranzato    20.3  21.9
Bahdanau   21.5  22.6
Wiseman    24.0  26.4
Conv       30.2  ----

WMT'14 en-de
     LL    LL-E  Seq  Seq-E

GNMT   24.7  26.2  24.6  26.3
Conv   25.2  26.4  ----  ----
Attn   28.4  ----  ----  ----

WMT'14 en-fr
      LL    LL-E  Seq   Seq-E
GNMT  39.0  40.3  39.9  41.2
Conv  40.5  41.6  ----  ----
Attn  41.0  ----  ----  ----

small gains compared to 
• architecture search 
• ensembling
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Sequence-Level Training
Pros 

• optimize end loss 

Cons 
• slower, need joint loss and/or init 
• optimize expectation, not MAP (except Wiseman+Rush) 
• smaller gains than architecture search or ensembling
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Conclusions
Gated Convolutional Architecture 
• Gating allows for linear model initially  
• Fast at train, inference 
• Accurate for LM, MT 

Training Seq2Seq for Machine Translation 
• Most progress attributed to architecture & ensembling 
• Less progress due to BLEU optimization
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Future Work

• Domain adaptation 

• Leverage monolingual data 
• e.g. study back-translation at scale 

• Understand ensemble 

• Model diversity, uncertainty
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Questions?
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Results Multi-hop Attention
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Ensemble En-Fr
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Network Depth
BL

EU

20.0

20.7

21.3

22.0

layers=5 layers=9 layers=13

kw=3 kw=5 kw=7
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Convolutional S2S: Multi-Hop Attention

 1st Layer                                                        2nd Layer 70



Convolutional S2S: Multi-Hop Attention

 3rd Layer                                                        4th Layer 71



Convolutional S2S: Multi-Hop Attention

 5th Layer                                                        6th Layer 72



Convolutional S2S: Multi-Hop Attention

 7th Layer                                                        8th Layer 73


