
Sequence to Sequence Learning:
Fast Training and Inference with

Gated Convolutions

http://github.com/facebookresearch/fairseq-py

Michael Auli 
with Jonas Gehring, David Grangier, Yann Dauphin, Angela Fan, Sergey
Edunov, Marc'Aurelio Ranzato, Myle Ott  

 1

http://github.com/facebookresearch/fairseq

Paris
Montreal

New York City
Menlo Park

Facebook AI Research 2

Sequence to Sequence Learning

sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and fixed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-
dimensional vector representation, and then to use another LSTM to extract the output sequence
from that vector (fig. 1). The second LSTM is essentially a recurrent neural network language model
[28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully
learn on data with long range temporal dependencies makes it a natural choice for this application
due to the considerable time lag between the inputs and their corresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entire input sentence to vector, and is very similar to Cho et al. [5].
Graves [10] introduced a novel differentiable attention mechanism that allows neural networks to
focus on different parts of their input, and an elegant variant of this idea was successfully applied
to machine translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another
popular technique for mapping sequences to sequences with neural networks, although it assumes a
monotonic alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task,
we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 380M parameters each) using a simple left-to-right beam-search decoder. This is
by far the best result achieved by direct translation with large neural networks. For comparison,
the BLEU score of a SMT baseline on this dataset is 33.30 [29]. The 34.81 BLEU score was
achieved by an LSTM with a vocabulary of 80k words, so the score was penalized whenever the
reference translation contained a word not covered by these 80k. This result shows that a relatively
unoptimized neural network architecture which has much room for improvement outperforms a
mature phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline
by 3.2 BLEU points and is close to the previous state-of-the-art (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not the target sentences in the training and test
set. By doing so, we introduced many short term dependencies that made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different

2

Figure from: Sutskever et al., 2014, "Sequence to Sequence Learning with Neural Networks"

Encoder LSTM Decoder LSTM

• Encode source sequence, and decode target sequence with RNNs  
(Sutksever et al., 2014)

• Attention: choose relevant encoder states (Bahdanau et al., 2014)

• Applications: translation, summarization, parsing, dialogue, ...
• Translation, e.g., "La maison de Léa." -> "Léa's house."

• "Models basis for 25% of posters at ACL",  
Lapata at keynote ACL'17

Sequence to Sequence Learning

 4

Sequence to Sequence Learning

 5

Sequence to Sequence Learning
• Illustrate that NMT is an active research field
• Sutskever et al., Bahdanau, Baidu, GNMT, ConvS2S, Transformer,

DeepL...

 6

Overview
• Gated convolutions for Language Modeling
• Convolutional Sequence to Sequence Learning
• Analyzing beam search for seq2seq

 7

Gated Convolutional Models for
Language Modeling

 8

Language Modeling
• Estimate probability of a sequence of

words

• Good language models help in speech
(Mikolov et al, 2010) and translation

• LSTMs achieve state-of-the-art
performance by processing
sentences left to right 9

P (w0, . . . , wN) = P (w0)
N∏

i=1

P (wi|w0, . . . , wi−1)

CNNs & RNNs
Vision → Convolutional neural networks  

NLP/Speech → Recurrent neural networks

 10

CNNs & RNNs
Vision → Convolutional neural networks  

NLP/Speech → Recurrent neural networks
• Architectures complex: bi-directional, reverse processing
• Fail to model long-range dependencies in language: need attention

 11

CNNs & RNNs
Vision → Convolutional neural networks  

NLP/Speech → Recurrent neural networks
• Architectures complex: bi-directional, reverse processing
• Fail to model long-range dependencies in language: need attention

This talk: model sequences well without RNNs

 12

What is a CNN?
• a linear projection taking several input vectors (embeddings, hidden

states)
• that maps them to a single output vector (of same or different size)
• which is applied repeatedly to the input sequence at a given stride

(=1 here) to yield an output sequence

the tall building … .

 13

CNNs for Sequence Modeling
• Hierarchical: bottom-up vs. left-right
• Homogeneous: all elements processed in same way
• Efficient: parallelizable over number of sequences & time dimension

the tall
…

building .
vs.

the tall building … .

 14

CNNs for Sequence Modeling
• In practice:

• dependencies are not arbitrarily long
• e.g. Dauphin et al. ICML’17

• CNNs are much more efficient than LSTMs on GPU
• e.g. Baidu DeepBench, github.com/baidu-research/DeepBench ’16

 15

Recurrent Neural Network

The cat jumps far

 16

Recurrent Neural Network

The cat jumps far

cat

 16

Recurrent Neural Network

The cat jumps far

cat jumps

 16

Recurrent Neural Network

The cat jumps far

cat jumps far

 16

Recurrent Neural Network

The cat jumps far

cat jumps far .

 16

Recurrent Neural Network

• O(T) sequential steps
• Recurrent connection causes

vanishing gradient
• Are the recurrent connections

necessary?

The cat jumps far

cat jumps far .

 16

Multi-Layer Perceptron

The cat jumps far

 17

Multi-Layer Perceptron

• O(1) sequential steps
• Proposed by (Bengio et al, 2001)
• Inefficient because no

computation is shared between
time steps

• Bad experimental results

The cat jumps far

 17

Multi-Layer Perceptron

• O(1) sequential steps
• Proposed by (Bengio et al, 2001)
• Inefficient because no

computation is shared between
time steps

• Bad experimental results

The cat jumps far

cat jumps far .

 17

Convolutional Neural Network

The cat jumps far

 18

Convolutional Neural Network

• O(1) sequential steps
• Incrementally build context of

context windows

The cat jumps far

 18

Convolutional Neural Network

• O(1) sequential steps
• Incrementally build context of

context windows

The cat jumps far

cat jumps far .

 18

Convolutional Neural Network

• O(1) sequential steps
• Incrementally build context of

context windows
• Builds hierarchical structure

The cat jumps far

cat jumps far .

 19

Gated Convolutional Neural Network
• Processes a sentence with a set of

convolutions
• Each convolution learns higher level

features
• Gates filter information to propagate

up the hierarchy
GGG

GGG

SSS

 20

Gated Convolutional Neural Network
• Processes a sentence with a set of

convolutions
• Each convolution learns higher level

features
• Gates filter information to propagate

up the hierarchy
GGG

GGG

SSS

 20

Gated Convolutional Neural Network
• Processes a sentence with a set of

convolutions
• Each convolution learns higher level

features
• Gates filter information to propagate

up the hierarchy
GGG

GGG

SSS

 20

Gated Convolutional Neural Network
• Processes a sentence with a set of

convolutions
• Each convolution learns higher level

features
• Gates filter information to propagate

up the hierarchy
GGG

GGG

SSS

 20

Gated Linear Unit
• The gated linear unit can be seen as

a multiplicative skip connection
• We find this approach to gating

improves performance

previous layer
or embeddings

Residual 
connection

Gated Linear  
Unit

dd

 21

Gated Linear Unit
• The gated linear unit can be seen as

a multiplicative skip connection
• We find this approach to gating

improves performance

previous layer
or embeddings

Residual 
connection

Gated Linear  
Unit

dd

 21

Gated Linear Unit
• The gated linear unit can be seen as

a multiplicative skip connection
• We find this approach to gating

improves performance

previous layer
or embeddings

Residual 
connection

Gated Linear  
Unit

 21

Training
• We use SGD with Nesterov's momentum and weight normalization

(Salimans & Kingma, 2016)
• Clipping for convnets (Pascanu et al. 2013)
• Adaptive Softmax (Grave et al, 2016) for very large vocabularies

 22

Datasets
• Google billion words (Chelba et al, 2013):

• ~800k vocabulary with ~800M tokens
• independent sentences (~20 tokens)

• WikiText-103 (Bradbury et al, 2016)
• ~200k vocabulary with ~100M tokens
• wikipedia articles (~4000 tokens)

 23

Results: Google billion words

• GatedCNN manages to match the LSTM with comparable output
approximation and computational budget for training

 24

Results: Google billion words

• GatedCNN manages to match the LSTM with comparable output
approximation and computational budget for training

 24

Results: Google billion words

• GatedCNN manages to match the LSTM with comparable output
approximation and computational budget for training

 24

Results: Wikitext-103

• SOTA accuracy despite limited context size (25 & 32 words)

 25

Speed

• Throughput is the number of tokens per second
• Responsiveness is the number of sequential tokens per second

 26

...

Gating

• Gated linear units (GLU in red) converge faster
• GTU is LSTM style gating of (Oord et al, 2016)

WikiText-103 Google Billion Words

 27

Context

• Competitive performance can be achieved with context of less than
40 tokens.

WikiText-103 Google Billion Words

10 20 30 40 50 60 70
Context

30

32

34

36

38

40

42

44

7
e
st

 3
e
rp

le
x
it

y

5 10 15 20 25
Context

40

50

60

70

80

90
7
e
st

 P
e
rp

le
x
it

y

 28

Training algorithm

• Clipping and weight normalization speed up convergence by allowing
large learning rates without divergence

 29

Summary
• Fully convolutional model of language that is competitive with LSTMs.
• Demonstrated impact of gating mechanisms for this task.
• Shown faster response times with this approach.

 30

Convolutional  
Sequence to Sequence Learning

 31

Convolutional Sequence to Sequence Learning
• non-RNN models can outperform very well-engineered RNNs on large

translation benchmarks
• Multi-hop attention
• Approach with very fast inference speed: >9x faster than RNN

Code and pre-trained models available!
Lua/Torch: https://github.com/facebookresearch/fairseq  
PyTorch: https://github.com/facebookresearch/fairseq-py

 32

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq

Previous work
• ByteNet (Kalchbrenner et al. 2016)  

Characters, dilated convolutions, no attention

• Quasi-RNNs (Bradburry et al., 2016) 
Recurrent pooling of CNN outputs, but still an RNN

• Convolutional encoders (Gehring et al., 2016)  
CNN encoder, LSTM decoder

 33

....

la maison de. Léa <end> .

 34

.... . . .

...

Encoder

 35

la maison de. Léa <end> .

.... . . .

...

Encoder

 35

la maison de. Léa <end> .

.... . . .

...

Encoder

. <start>

Decoder

 35

la maison de. Léa <end> .

.... . . .

...

.

. .

<start>

..

Encoder

Decoder

 36

la maison de. Léa <end> .

.... . . .

...

.

. .

<start>

..

Encoder

Decoder

 36

la maison de. Léa <end> .

.... . . .

...

.

. .

<start>

..

Encoder

Attention

Decoder

 36

la maison de. Léa <end> .

.... . . .

...

.

. .

<start>

.

..

Encoder

Attention

Decoder

 37

la maison de. Léa <end> .

.... . . .

...

.

. .

<start>

.

..

Encoder

Attention

Decoder

 37

la maison de. Léa <end> .

.... . . .

...

.

. .

<start>

.

..

Encoder

Attention

Decoder

 37

la maison de. Léa <end> .

.... . . .

...

.

. .

<start>

.

..

Encoder

Attention

Decoder

Léa
 37

la maison de. Léa <end> .

.... . . .

...

.

. .

<start>

..

Encoder

Attention

Decoder

Léa
 38

la maison de. Léa <end> .

.

.... . . .

...

.

. .

<start>

..

Encoder

Attention

Decoder

Léa
 38

la maison de. Léa <end> .

.

.... . . .

...

.

. .

<start>

..

Encoder

Attention

Decoder

Léa
 38

la maison de. Léa <end> .

.

.... . . .

...

.

. .

<start>

..

Encoder

Attention

Decoder

Léa
 39

la maison de. Léa <end> .

.

.... . . .

...

.

. .

<start>

..

Encoder

Attention

Decoder

Léa
 39

la maison de. Léa <end> .

.

.... . . .

...

.

. .

<start>

..

Encoder

Attention

Decoder

Léa
 39

la maison de. Léa <end> .

.

.... . . .

...

.

. .

<start>

..

Encoder

Attention

Decoder

Léa 's
 39

la maison de. Léa <end> .

.

.... . . .

...

Encoder

Attention

Decoder

. <start> Léa 's
 40

la maison de. Léa <end> .

.

.... . . .

...

Encoder

Attention

Decoder

. <start> Léa 's
 40

la maison de. Léa <end> .

.

.... . . .

...

Encoder

Attention

Decoder

. <start> Léa 's
 40

la maison de. Léa <end> .

.

.... . . .

...

Encoder

Attention

Decoder

. <start> Léa 's
 41

la maison de. Léa <end> .

.

.... . . .

...

Encoder

Attention

Decoder

. <start> Léa 's
 41

la maison de. Léa <end> .

.

.... . . .

...

Encoder

Attention

Decoder

. <start> Léa 's
 41

la maison de. Léa <end> .

.

.... . . .

...

Encoder

Attention

Decoder

. <start> Léa 's house
 41

la maison de. Léa <end> .

.

• Similar to Dauphin et al. '17
• Input: word + position embeddings:

1, 2, 3, ...
• Weight Normalization (Salimans &

Kingma, 2016)
• No batch or layer norm:

initialization (He at al. '15) and  
scale by sqrt(1/2)

• Repeat N times

Convolutional S2S: Encoder

previous layer
or embeddings

 42

• Similar to Dauphin et al. '17
• Input: word + position embeddings:

1, 2, 3, ...
• Weight Normalization (Salimans &

Kingma, 2016)
• No batch or layer norm:

initialization (He at al. '15) and  
scale by sqrt(1/2)

• Repeat N times

Convolutional S2S: Encoder

previous layer
or embeddings

 42

Convolution

• Similar to Dauphin et al. '17
• Input: word + position embeddings:

1, 2, 3, ...
• Weight Normalization (Salimans &

Kingma, 2016)
• No batch or layer norm:

initialization (He at al. '15) and  
scale by sqrt(1/2)

• Repeat N times

Convolutional S2S: Encoder

previous layer
or embeddings

 42

Convolution

Gated Linear  
Unit

• Similar to Dauphin et al. '17
• Input: word + position embeddings:

1, 2, 3, ...
• Weight Normalization (Salimans &

Kingma, 2016)
• No batch or layer norm:

initialization (He at al. '15) and  
scale by sqrt(1/2)

• Repeat N times

Convolutional S2S: Encoder

previous layer
or embeddings

 42

Convolution

Residual 
connection

Gated Linear  
Unit

• Input: word embeddings  
+ position embeddings: 1, 2, 3, ...

• Causal convolution over generated
sequence so far

• Dot-product attention at every layer

Convolutional S2S: Decoder

 43

previous layer
or embeddings

Encoder
output

• Input: word embeddings  
+ position embeddings: 1, 2, 3, ...

• Causal convolution over generated
sequence so far

• Dot-product attention at every layer

Convolutional S2S: Decoder

 43

previous layer
or embeddings

Encoder
output

Attention

• Input: word embeddings  
+ position embeddings: 1, 2, 3, ...

• Causal convolution over generated
sequence so far

• Dot-product attention at every layer

Convolutional S2S: Decoder

 43

previous layer
or embeddings

Encoder
output

AttentionAttention

• Input: word embeddings  
+ position embeddings: 1, 2, 3, ...

• Causal convolution over generated
sequence so far

• Dot-product attention at every layer

Convolutional S2S: Decoder

 43

previous layer
or embeddings

Encoder
output

AttentionAttention

• Attention in every decoder layer
• Queries contain information about

previous source contexts

Convolutional S2S: Multi-hop Attention

 44

Attention

Encoder
output

• Attention in every decoder layer
• Queries contain information about

previous source contexts

Convolutional S2S: Multi-hop Attention

 44

Attention

Encoder
output

Attention

Encoder
output

Convolutional S2S

Convolutional Sequence to Sequence Learning

inputs. Non-linearities allow the networks to exploit the
full input field, or to focus on fewer elements if needed.

Each convolution kernel is parameterized as W 2 R2d⇥kd,
bw 2 R2d and takes as input X 2 Rk⇥d which is a
concatenation of k input elements embedded in d dimen-
sions and maps them to a single output element Y 2 R2d

that has twice the dimensionality of the input elements;
subsequent layers operate over the k output elements of
the previous layer. We choose gated linear units (GLU;
Dauphin et al., 2016) as non-linearity which implement a
simple gating mechanism over the output of the convolu-
tion Y = [A B] 2 R2d:

v([A B]) = A⌦ �(B)

where A,B 2 Rd are the inputs to the non-linearity, ⌦ is
the point-wise multiplication and the output v([A B]) 2

Rd is half the size of Y . The gates �(B) control which
inputs A of the current context are relevant. A similar non-
linearity has been introduced in Oord et al. (2016b) who
apply tanh to A but Dauphin et al. (2016) shows that GLUs
perform better in the context of language modelling.

To enable deep convolutional networks, we add residual
connections from the input of each convolution to the out-
put of the block (He et al., 2015a).

hl
i = v(W l[hl�1

i�k/2, . . . , h
l�1
i+k/2] + blw) + hl�1

i

For encoder networks we ensure that the output of the con-
volutional layers matches the input length by padding the
input at each layer. However, for decoder networks we have
to take care that no future information is available to the de-
coder (Oord et al., 2016a). Specifically, we pad the input
by k � 1 elements on both the left and right side by zero
vectors, and then remove k elements from the end of the
convolution output.

We also add linear mappings to project between the embed-
ding size f and the convolution outputs that are of size 2d.
We apply such a transform to w when feeding embeddings
to the encoder network, to the encoder output zuj , to the fi-
nal layer of the decoder just before the softmax hL, and to
all decoder layers hl before computing attention scores (1).

Finally, we compute a distribution over the T possible next
target elements yi+1 by transforming the top decoder out-
put hL

i via a linear layer with weights Wo and bias bo:

p(yi+1|y1, . . . , yi,x) = softmax(Woh
L
i + bo) 2 RT

3.3. Multi-step Attention

We introduce a separate attention mechanism for each de-
coder layer. To compute the attention, we combine the cur-
rent decoder state hl

i with an embedding of the previous

Figure 1. Illustration of batching during training. The English
source sentence is encoded (top) and we compute all attention
values for the four German target words (center) simultaneously.
Our attentions are just dot products between decoder context rep-
resentations (bottom left) and encoder representations. We add
the conditional inputs computed by the attention (center right) to
the decoder states which then predict the target words (bottom
right). The sigmoid and multiplicative boxes illustrate Gated Lin-
ear Units.

target element gi:

dli = W l
dh

l
i + bld + gi (1)

For decoder layer l the attention alij of state i and source el-
ement j is computed as a dot-product between the decoder
state summary dli and each output zuj of the last encoder
block u:

alij =
exp

�
dli · z

u
j

�
Pm

t=1 exp
�
dli · z

u
t

�

The conditional input cli to the current decoder layer is a
weighted sum of the encoder outputs as well as the input
element embeddings ej (Figure 1, center right):

cli =
mX

j=1

alij(z
u
j + ej) (2)

This is slightly different to recurrent approaches which
compute both the attention and the weighted sum over zuj

• High training efficiency due to  
parallel computation in decoder

• Cross Entropy objective
• Very similar to ResNet models  

(Nesterov etc., He et al. '15)

 45

Experimental Methodology
• Translation & Summarization
• Large-scale tasks:

• WMT'14 English-German (4.5M sentence pairs)
• WMT'14 English-French (36M sentence pairs)
• IWSLT'14 German-English (< 0.2M sentence pairs)

 46

WMT'14 English-German Translation

Vocabulary BLEU

CNN ByteNet (Kalchbrenner et al., 2016) Characters 23.75

RNN GNMT (Wu et al., 2016) Word 80k 23.12

RNN GNMT (Wu et al., 2016) Word pieces 24.61

 47

WMT'14 English-German Translation

Vocabulary BLEU

CNN ByteNet (Kalchbrenner et al., 2016) Characters 23.75

RNN GNMT (Wu et al., 2016) Word 80k 23.12

RNN GNMT (Wu et al., 2016) Word pieces 24.61

ConvS2S BPE 40k 25.16

ConvS2S: 15 layers in encoder/decoder (10x512 units, 3x768 units, 2x2048) 
Maximum context size: 27 words 47

WMT'14 English-German Translation

Vocabulary BLEU

CNN ByteNet (Kalchbrenner et al., 2016) Characters 23.75

RNN GNMT (Wu et al., 2016) Word 80k 23.12

RNN GNMT (Wu et al., 2016) Word pieces 24.61

ConvS2S BPE 40k 25.16

Transformer (Vaswani et al., 2017) Word pieces 28.4

ConvS2S: 15 layers in encoder/decoder (10x512 units, 3x768 units, 2x2048) 
Maximum context size: 27 words 47

More work on non-RNN models!

WMT'14 English-French Translation

Vocabulary BLEU

RNN GNMT (Wu et al., 2016) Word 80k 37.90

RNN GNMT (Wu et al., 2016) Word pieces 38.95

 48

WMT'14 English-French Translation

Vocabulary BLEU

RNN GNMT (Wu et al., 2016) Word 80k 37.90

RNN GNMT (Wu et al., 2016) Word pieces 38.95

RNN GNMT + RL (Wu et al., 2016) Word pieces 39.92

 48

WMT'14 English-French Translation

Vocabulary BLEU

RNN GNMT (Wu et al., 2016) Word 80k 37.90

RNN GNMT (Wu et al., 2016) Word pieces 38.95

RNN GNMT + RL (Wu et al., 2016) Word pieces 39.92

ConvS2S BPE 40k 40.51

ConvS2S: 15 layers in encoder/decoder (5x512 units, 4x768 units, 3x2048, 2x4096)
 48

WMT'14 English-French Translation

Vocabulary BLEU

RNN GNMT (Wu et al., 2016) Word 80k 37.90

RNN GNMT (Wu et al., 2016) Word pieces 38.95

RNN GNMT + RL (Wu et al., 2016) Word pieces 39.92

ConvS2S BPE 40k 40.51

Transformer (Vaswani et al., 2017) Word pieces 41.0

ConvS2S: 15 layers in encoder/decoder (5x512 units, 4x768 units, 3x2048, 2x4096)
 48

Inference Speed on WMT'14 En-Fr

Hardware BLEU Time (s)

RNN GNMT (Wu et al., 2016) GPU (K80) 31.20 3028

RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322

RNN GNMT (Wu et al., 2016) TPU 31.21 384

ntst1213 (6003 sentences) 49

Inference Speed on WMT'14 En-Fr

Hardware BLEU Time (s)

RNN GNMT (Wu et al., 2016) GPU (K80) 31.20 3028

RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322

RNN GNMT (Wu et al., 2016) TPU 31.21 384

ConvS2S, beam=5 GPU (K40) 34.10 587

ConvS2S, beam=1 GPU (K40) 33.45 327

ntst1213 (6003 sentences) 49

Inference Speed on WMT'14 En-Fr

Hardware BLEU Time (s)

RNN GNMT (Wu et al., 2016) GPU (K80) 31.20 3028

RNN GNMT (Wu et al., 2016) CPU (88 cores) 31.20 1322

RNN GNMT (Wu et al., 2016) TPU 31.21 384

ConvS2S, beam=5 GPU (K40) 34.10 587

ConvS2S, beam=1 GPU (K40) 33.45 327

ConvS2S, beam=1 GPU (GTX-1080ti) 33.45 142

ConvS2S, beam=1 CPU (48 cores) 33.45 142

ntst1213 (6003 sentences) 49

Text Summarization
Compress first sentence of a news article into a headline (Rush et al. 2016)

Rouge-1 Rouge-2 Rouge-L

RNN Likelihood optimized (Shen et al. 2016) 32.7 15.2 30.6

RNN Rouge-optimized (Shen et al. 2016) 36.5 16.6 33.4

RNN repeated words (Suzuki & Nagata, 2017) 36.3 17.3 33.9

ConvS2S 35.9 17.5 33.3

ConvS2S: 6 layers in encoder/decoder, nhid=256
 50

Summary
• Alternative architecture for sequence to sequence learning
• Higher accuracy than models of similar size, despite fixed size context
• Faster generation (9x faster on lesser hardware)

Code & pre-trained models:  
Lua Torch: http://github.com/facebookresearch/fairseq

PyTorch: http://github.com/facebookresearch/fairseq-py
 51

http://github.com/facebookresearch/fairseq
http://github.com/facebookresearch/fairseq

Beam Search for Seq2Seq

 52

At test time, we want to generate from

• sampling is easy, decomposability allows left to right sampling

• MAP inference is hard

• Beam approximates MAP inference

Generating from Seq2Seq
P (y|x) with y 2 {1, . . . , V }⇤

ŷ = argmaxyP (y|x) with y 2 {1, . . . , V }⇤

y ⇠ P (y|x) =
Y

t

P (yt|yt�1
1 , x)

 53

Beam Search

the little cat

the tiny feline

the small kitten

2

66666666664

.

.

.

.

.

.

.

.

3

77777777775

2

66666666664

.

.

.

.

.

.

.

.

3

77777777775

2

66666666664

.

.

.

.

.

.

.

.

3

77777777775

runs
jumps

jumps

3 prefixes 3 * V expansions Top 3 expansions

 54

On Search Space Size
• Effective vocabulary is rather small
• e.g. vocabulary selection with alignment method (WMT’14 en-de)

Similar BLEU 55

On Search Space Size
• beam results are prominent

• e.g. 20 time steps above 0.9 means more than 0.920 ' 1

8

Beam
Sampling

 56

Beam Search
• Q: Does it work? good approximation of MAP?
• Q: Is it a good idea? Do we care about MAP?

 57

Beam Search
• Q: Does it work? good approximation of MAP?
• Q: Is it a good idea? Do we care about MAP?

 57

Sample k times &  
choose by logrpob

Beam Search
• Q: Does it work? good approximation of MAP?
• Q: Is it a good idea? Do we care about MAP?

 58

Sample k times &  
choose by BLEU

Not a Search Problem?
arXiv Aug’17

+0.4

Better model = better estimation not better search

Sequence-Level Training
• Maximizing token likelihood does not consider BLEU

Sequence Level Training with Recurrent Neural Networks
Marc-Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba - Nov 2015
[Reinforce, Williams 92][expected BLEU]

Sequence-to-Sequence Learning as Beam-Search Optimization
Sam Wiseman, Alexander M. Rush - June 2016
[learning as search optimization (LaSO), Daume and Marcu 2005][search BLEU]

Google's Neural Machine Translation System
Wu et al - Oct 2016
[close to Ranzato'15 + new reward][expected GLEU]

An Actor-Critic Algorithm for Sequence Prediction
Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, J. Pineau, A.
Courville, Y. Bengio - July ’16
[actor-critic, Sutton'84][expected BLEU]

 60

Sequence-Level Training
IWSLT'14 de-en

 LL Seq
Ranzato 20.3 21.9
Bahdanau 21.5 22.6
Wiseman 24.0 26.4
Conv 30.2 ----

WMT'14 en-de
 LL LL-E Seq Seq-E

GNMT 24.7 26.2 24.6 26.3
Conv 25.2 26.4 ---- ----
Attn 28.4 ---- ---- ----

WMT'14 en-fr
 LL LL-E Seq Seq-E
GNMT 39.0 40.3 39.9 41.2
Conv 40.5 41.6 ---- ----
Attn 41.0 ---- ---- ----

small gains compared to
• architecture search
• ensembling

 61

Sequence-Level Training
Pros

• optimize end loss

Cons
• slower, need joint loss and/or init
• optimize expectation, not MAP (except Wiseman+Rush)
• smaller gains than architecture search or ensembling

 62

Conclusions
Gated Convolutional Architecture
• Gating allows for linear model initially
• Fast at train, inference
• Accurate for LM, MT

Training Seq2Seq for Machine Translation
• Most progress attributed to architecture & ensembling
• Less progress due to BLEU optimization

 63

Future Work

• Domain adaptation

• Leverage monolingual data
• e.g. study back-translation at scale

• Understand ensemble

• Model diversity, uncertainty

 64

Questions?

 65

 66

 66

Results Multi-hop Attention

 67

Ensemble En-Fr

 68

Network Depth
BL

EU

20.0

20.7

21.3

22.0

layers=5 layers=9 layers=13

kw=3 kw=5 kw=7

 69

Convolutional S2S: Multi-Hop Attention

 1st Layer 2nd Layer 70

Convolutional S2S: Multi-Hop Attention

 3rd Layer 4th Layer 71

Convolutional S2S: Multi-Hop Attention

 5th Layer 6th Layer 72

Convolutional S2S: Multi-Hop Attention

 7th Layer 8th Layer 73

