
Language Modeling with Gated Convolutional Networks

Yann N. Dauphin
Angela Fan
Michael Auli
David Grangier
Facebook AI Research

Abstract
The pre-dominant approach to language model-
ing to date is based on recurrent neural networks.
In this paper we present a convolutional approach
to language modeling. We introduce a novel
gating mechanism that eases gradient propaga-
tion and which performs better than the LSTM-
style gating of Oord et al. (2016b) despite being
simpler. We achieve a new state of the art on
WikiText-103 as well as a new best single-GPU
result on the Google Billion Word benchmark. In
settings where latency is important, our model
achieves an order of magnitude speed-up com-
pared to a recurrent baseline since computation
can be parallelized over time. To our knowledge,
this is the first time a non-recurrent approach out-
performs strong recurrent models on these tasks.

1. Introduction
Statistical language models estimate the probability distri-
bution of a sequence of words. This amounts to modeling
the probability of the next word given the preceding words,
i.e.

P (w0, . . . , wN) = P (w0)

N∏
i=1

P (wi|w0, . . . , wi−1),

where wi are discrete word indices in a vocabulary. Lan-
guage models are a critical part of systems for speech
recognition (Yu & Deng, 2014) as well as machine transla-
tion (Koehn, 2010).

Recently, neural networks (Bengio et al., 2003; Mikolov
et al., 2010; Jozefowicz et al., 2016) have been shown to
outperform classical n-gram language models (Kneser &
Ney, 1995; Chen & Goodman, 1996). Classical language
models suffer under data sparsity that makes it difficult to
represent large contexts and therefore long-range depen-
dencies. Neural language models tackle this issue by em-

bedding words in continuous space over which a neural net-
work is applied. The current state of the art to language
modeling is based on long short term memory networks
(LSTM; Hochreiter et al., 1997) which can model poten-
tially arbitrarily long dependencies.

In this paper, we introduce gated convolutional networks
and apply them to language modeling. Convolutional net-
works can be stacked to represent large context sizes and
extract hierarchical features over larger and larger contexts
with more abstractive features (LeCun & Bengio, 1995).
This allows to model long-term dependencies by applying
O(Nk) operations over a context of sizeN and kernel width
k. In contrast, recurrent networks view the input as a chain
structure and therefore require a linear number O(N) of
operations.

Analyzing the input hierarchically bears resemblance to
classical grammar formalisms which build syntactic tree
structure of increasing granuality, e.g., sentences consist
of noun phrases and verb phrases each comprising further
internal structure (Manning & Schütze, 1999; Steedman,
2002). Hierarchical structure also eases learning since the
number of non-linearities for a given context size is reduced
compared to a chain structure, thereby mitigating the van-
ishing gradient problem (Glorot & Bengio, 2010).

Modern hardware is well suited to models that are highly
parallelizable. In recurrent networks, the next output de-
pends on the previous hidden state which does not en-
able parallelization over the elements of a sequence. Con-
volutional networks are very amenable to this computing
paradigm since the computation of all input words can be
performed simultaneously (§2).

Gating has been shown to be essential for recurrent neural
networks to reach state-of-the-art performance (Jozefow-
icz et al., 2016). Our gated linear units reduce the vanish-
ing gradient problem for deep architectures by providing a
linear path for the gradients while retaining non-linear ca-
pabilities (§3)

We run experiments in a single GPU setup and show that

ar
X

iv
:1

61
2.

08
08

3v
1

 [
cs

.C
L

]
 2

3
D

ec
 2

01
6

Language Modeling with Gated Convolutional Networks

gated convolutional networks outperform other recently
published language models such as LSTMs trained in a
similar setting on the Google Billion Word Benchmark
(Chelba et al., 2013). We also evaluate the ability of
our models to deal with long-range dependencies on the
WikiText-103 benchmark for which the model is condi-
tioned on an entire paragraph rather than a single sen-
tence and we achieve a new state-of-the-art on this dataset
(Merity et al., 2016). Finally, we show that gated linear
units achieve higher accuracy and converge faster than the
LSTM-style gating of Oord et al. (2016; §4, §5)

2. Approach
In this paper we introduce a new neural language model
that replaces recurrent connections typically used in recur-
rent networks with gated temporal convolutions. Neural
language models (Bengio et al., 2003) produce a repre-
sentation H = [h0, . . . ,hN] of the context for each word
w0, . . . , wN to predict the next word P (wi|hi). Recurrent
neural networks compute H through a recurrent function
hi = f(hi−1, wi−1) which is an inherently sequential pro-
cess that cannot be parallelized over i.1

The proposed approach convolves the inputs to obtain H =
f ∗ w and therefore has no temporal dependencies which
makes it easier to parallelize over the individual words of
a sentence. This process will compute each context as a
function of a number of preceding words. Compared to
recurrent networks, the context size is finite but we will
demonstrate that we can represent large enough contexts to
perform well in practice (§5).

Figure 1 illustrates the model architecture. Words are rep-
resented by a vector embedding stored in a lookup table
D|V|×m where |V| is the number of words in the vocabu-
lary and m is the embedding size. The input to our model
is a sequence of words w0, . . . , wN which are represented
by word embeddings E = [Dw0

, . . . ,DwN
]. We compute

the hidden layers h0, . . . , hL as

hl(X) = (X ∗W + b)⊗ σ(X ∗V + c) (1)

where X ∈ RN×m is the input of layer hl, that is either
word embeddings or the outputs of previous layers, W ∈
Rk×m×n, b ∈ Rn, V ∈ Rk×m×n, c ∈ Rn are learned
parameters, σ is the sigmoid function and⊗ is the element-
wise product between matrices.

When convolving inputs, we take care that hi does not con-
tain information from future words. We address this by
shifting the convolution inputs to prevent the kernels from
seeing future context (Oord et al., 2016a). Specifically, we
zero-pad the beginning of the sequence by k/2 elements,

1Parallelization is usually done over multiple sequences in-
stead.

Input sentence

Text The cat sat on the mat .

w0 w1 w2 w3 w4 w5 w6

Lookup Table

E = Dwi

Convolution

A = E∗W + b

Gating

H0 = A⊗σ(B)

σ

Softmax

Y = softmax(WHL)

B = E∗V + c

Stack L - 1 Convolution+Gating Blocks

Figure 1. Architecture of the gated convolutional network for lan-
guage modeling.

assuming the first input element is the beginning of se-
quence marker which we do not predict, where k is the
width of the kernel.

The output of each layer is a linear projection X ∗W + b
modulated by the gates σ(X ∗V + c). Similar to LSTMs,
the gates multiply each element of the matrix X ∗W + b
and control the information passed in the hierarchy. We dub
this gating mechanism Gated Linear Units (GLU). Stacking
multiple layers on top of the input E gives a representation
of the context for each word H = hL◦. . .◦h0(E). We wrap
the convolution and the gated linear unit in a pre-activation
residual block that adds the input of the block to the output
(He et al., 2015a). The blocks have a bottleneck structure
for computational efficiency and each block has up to 5

Language Modeling with Gated Convolutional Networks

layers.

The simplest choice to obtain model predictions is to use
a softmax layer, however, this choice is often computa-
tionally inefficient for large vocabularies and an approx-
imation such as noise contrastive estimation (Gutmann
& Hyvärinen) or hierarchical softmax (Morin & Bengio,
2005) is preferred. We choose an improvement of the latter
known as adaptive softmax which assigns higher capacity
to very frequent words and lower capacity to rare words
(Grave et al., 2016a). This results in lower memory re-
quirements as well as faster computation, both at training
and at test time.

3. Gating Mechanisms
Gating mechanisms control the path through which infor-
mation flows in the network and have proven to be use-
ful for recurrent neural networks (Hochreiter & Schmidhu-
ber, 1997). LSTMs enable long-term memory via a sep-
arate cell controlled by input and forget gates. This al-
lows information to flow unimpeded through potentially
many timesteps. Without these gates information could
easily vanish through the transformations of each timestep.
In contrast, convolutional networks do not suffer from the
same kind of vanishing gradient and we find experimentally
that they do not require forget gates.

Therefore, our gated linear units only possess output gates
which allow the network to control which information
should be propagated in the hierarchy of layers. We show
this mechanism to be useful for language modeling as it al-
lows the model to select which words or features are rele-
vant to predict the next word. In parallel to our work, Oord
et al. (2016b) have shown the effectiveness of an LSTM-
style mechanism of the form tanh(X ∗W + b) ⊗ σ(X ∗
V + c) for the convolutional modeling of images.

Gated linear units are a simplified gating mechanism based
on the work of Dauphin & Grangier (2015) for non-
deterministic gates that reduce the vanishing gradient prob-
lem by having linear units couple to the gates. This retains
the non-linear capabilities of the layer while allowing the
gradient to pass without scaling through the linear unit. The
gradient of the LSTM-style gating of Oord et al. (2016b) is

∇[tanh(X)⊗ σ(X)] = tanh′(X)∇X⊗ σ(X)

+σ′(X)∇X⊗ tanh(X). (2)

Notice that it gradually vanishes as we stack layers because
of the downscaling factors tanh′(X) and σ′(X). In con-
trast, the gradient of the gated linear unit

∇[X⊗ σ(X)] = ∇X⊗ σ(X) + X⊗ σ′(X)∇X (3)

has a path ∇X ⊗ σ(X) without downscaling for the ac-
tivated gating units in σ(X). This can be seen as a multi-

plicative skip connection which helps gradient flow through
the layers. We find that gated linear units perform better
in practice compared to LSTM-style gating which we dub
gated tanh units (GTU; §5).

4. Experimental Setup
4.1. Datasets

We report results on two public large-scale language mod-
eling datasets. First, the Google Billion Word dataset
(GBW; Chelba et al., 2013) is considered one of the largest
language modeling datasets with close to one billion to-
kens and a vocabulary of over 800K words. In this dataset,
words appearing less than 3 times are replaced with a spe-
cial unknown symbol. The data is based on an English cor-
pus of 30, 301, 028 sentences whose order has been shuf-
fled. Second, WikiText-103 is a smaller dataset of over
100M tokens with a vocabulary of about 200K words (Mer-
ity et al., 2016). Different to GBW, sentences are consec-
utive which allows to condition the model on larger con-
texts than single sentences. For both datasets, we add a be-
ginning of sequence marker <S > at the start of each line
and an end of sequence marker </S> at the end of each
line. On the Google Billion Word corpus each sequence
is a single sentence, while on WikiText-103 a sequence
is an entire paragraph. The model sees <S> and </S >
as input but only predicts the end of sequence marker
</S>. We evaluate models by computing the perplexity
e

1
N

∑N
i − log p(wi|...,wi−1) on the standard held out test por-

tion of each dataset.

4.2. Training

We found Nesterov’s momentum (Sutskever et al., 2013)
to be worth the over-head compared to standard stochas-
tic gradient descent. The cost in terms of memory is stor-
ing another vector of the size of the parameters but it in-
creases the speed of convergence significantly with mini-
mal computational over-head. The speed of convergence
was further increased by clipping the gradients to 0.1 (Pas-
canu et al., 2013) and weight normalization (Salimans &
Kingma, 2016). The combination of these methods allowed
us to achieve stable and fast convergence with compara-
tively large learning rates such as 1.

Pascanu et al. (2013) argue for gradient clipping because it
prevents the gradient explosion problem that characterizes
RNNs. We argue that gradient clipping is not tied to RNNs
since it can be derived from the more general concept of
trust region methods. Gradient clipping is found using a

Language Modeling with Gated Convolutional Networks

Model Test PPL Hardware
Sigmoid-RNN-2048 (Ji et al., 2015) 68.3 1 CPU
Interpolated KN 5-Gram (Chelba et al., 2013) 67.6 100 CPUs
Sparse Non-Negative Matrix LM (Shazeer et al., 2014) 52.9 -
RNN-1024 + MaxEnt 9 Gram Features (Chelba et al., 2013) 51.3 24 GPUs
LSTM-2048-512 (Jozefowicz et al., 2016) 43.7 32 GPUs
2-layer LSTM-8192-1024 (Jozefowicz et al., 2016) 30.6 32 GPUs
LSTM-2048 (Grave et al., 2016a) 43.9 1 GPU
2-layer LSTM-2048 (Grave et al., 2016a) 39.8 1 GPU
GCNN-13 38.1 1 GPU

Table 1. Results on the Google Billion Word test set.

spherical trust region

∆θ∗ = argmin
s. t. ‖∆θ‖≤ε

f(θ) +∇fT∆θ

= −max(‖∇f‖, ε) ∇f
‖∇f‖

. (4)

Our experiments run significantly faster with the use of gra-
dient clipping even though we do not use a recurrent archi-
tecture.

We train on a single Tesla M40 GPU and implement our
models in Torch (Collobert et al., 2011). While better
performance could be achieved by training longer and on
multiple GPUs, we focused on better exploring the hyper-
parameter space of small models to identify a compact
model with good generalization performance. This strategy
is attractive to both understand architectual choices and to
identify models with better efficiency at test time.

4.3. Hyper-parameters

We found good hyper-parameter configurations by cross-
validation using random search on a validation set. In terms
of the architecture of the model, we select the number of
residual blocks between {1, . . . , 10}, the size of the embed-
dings with {128, . . . , 256}, the number of units between
{128, . . . , 2048}, the kernel width between {3, . . . , 5}. In
general, finding a good architecture is simple and the rule
of thumb is that the larger the model, the better the per-
formance. In terms of optimization, we initialize the lay-
ers of the model with the Kaiming initialization (He et al.,
2015b), with the learning rate sampled uniformly in the in-
terval [1., 2.], the momentum set to 0.99 and clipping set
to 0.1. Good hyper-parameter for the optimizer are quite
straightforward to find and the optimal values do not seem
to change very much between datasets.

5. Results
LSTMs and recurrent networks are able to capture long
term dependencies and are fast becoming cornerstones in
natural language processing. In this section, we compare

strong LSTM and RNN models from the literature to our
gated convolutional approach on two datasets.

Table 1 shows that our model outperforms all state-of-the-
art approaches that have been trained on a single GPU on
the Google Billion Word benchmark. Of the methods that
use multiple GPUs, only the very large LSTM of Joze-
fowicz et al. (2016) achieves better results. However, this
model was trained on 32 GPUs for 3 weeks while as our
model trains on a single GPU in 2 weeks. The GCNN-13
model has 13 layers of 1268 units each and kernel width 4.

Model Test PPL
LSTM-1024 (Grave et al., 2016b) 48.7
GCNN-8 44.9

Table 2. Results on the WikiText-103 dataset.

On Google Billion Word, the average sentence length is
only 20 words which is relatively short. Next, we test on
WikiText-103 to answer the question if our model can per-
form equally well in a setup were much larger contexts are
possible. On WikiText-103, an input sequence is an entire
Wikipedia article instead of an individual sentence. The re-
sults (Table 2) show that the gated convolutional model out-
performs an LSTM on this problem as well. The GCNN-8
model has 8 layers with 800 units each and the LSTM has
1024 units.

5.1. Computational Efficiency

Throughput Responsiveness
(CPU) (GPU) (GPU)

LSTM-2048 169 45,622 2,282
GCNN-22 179 45,878 45,878

Table 3. Processing speed in tokens/s at test time for an LSTM
with 2048 units and GCNN with 22 layers achieving 43.9 and
43.8 perplexity, respectively on Google Billion Word. The GCNN
improves the responsiveness by 20 times while maintaining high
throughput.

Language Modeling with Gated Convolutional Networks

0 5 10 15 20 25 30 35
Epochs

45

50

55

60

65

70

75

80

T
e
st

 P
e
rp

le
x
it

y

Tanh
ReLU
GTU
GLU

0 50 100
Hours

40

45

50

55

60

65

70

T
e
st

 P
e
rp

le
x
it

y

ReLU
GTU
GLU

Figure 2. Learning curves on WikiText-103 (left) and Google Billion Word (right) for models with different activation mechanisms.
Models with gated linear units (GLU) converge faster and to a lower perplexity.

Computational cost is an important consideration for lan-
guage models. Depending on the application, there are a
number of metrics to consider. We measure the throughput
of a model as the number of tokens that can be processed
per second. Throughput can be maximized by processing
many sentences in parallel to amortize sequential opera-
tions. In contrast, responsiveness is the speed of process-
ing the input sequentially, one token at a time. Throughput
is important because it indicates the time required to pro-
cess a corpus of text and responsiveness is an indicator of
the time to finishing processing a sentence. A model can
have low responsiveness but high throughput by evaluating
many sentences simultaneously through batching. In this
case, such a model is slow in finishing processing individ-
ual sentences, but can process many sentences at a good
rate.

We evaluate the throughput and responsiveness for mod-
els that reach approximately 43.9 perplexity on the Google
Billion Word benchmark. We consider the LSTM with
2048 units in Table 1 and a GCNN with 22 layers with
Resnet blocks that have a bottleneck structure as described
by (He et al., 2015a). The network has 3 bottleneck blocks
of the form 128, 128, 512 followed by a 256, 256, 512 fol-
lowed by a fully connected 1024, 1024, 2048 block. Note
that only the middle layer of these blocks is a convolution
(k = 5). We found that this architecture is quite important
to obtain good computational efficiency.

Parameters FLOPs/token
LSTM-2048 289M 19M
GCNN-22 185M 14M

Table 4. Number of parameters and FLOPs for the models of Fig-
ure 3. FLOPs exclude the operations required by the softmax
layer which are identical.

The throughput of the LSTM is measured by using a large

batch of 750 sequences of length 20, resulting in 15, 000
tokens per batch. Table 3 shows that the throughput for
the LSTM and the GCNN are similar on CPU but not on
GPU. The LSTM performs very well on GPU because the
large batch size of 750 enables high parallelization. This
is because the LSTM implementation has been thoroughly
optimized and uses cuDNN while as the cuDNN imple-
mentation of convolutions is not been optimized for 1-D
convolutions which we use in our model. We believe much
better performance can be achieved by a more efficient 1-
D cuDNN convolution. Unlike the LSTM, the GCNN can
be parallelized both over sequences as well as across the
tokens of each sequence. On the other hand, GCNN is 20
times faster in terms of responsiveness.

Table 4 shows that the convolutional model requires fewer
parameters and floating point operations per token than a
comparable LSTM.

5.2. Gating Mechanisms

In this section we compare the gated linear unit with other
mechanisms as well as to models without gating. We con-
sider the LSTM-style gating mechanism (GTU) tanh(X ∗
W+b)⊗σ(X∗V+c) of (Oord et al., 2016b) and networks
that use regular ReLU or Tanh activations. Gating units
add parameters and in order to make a fair comparison, we
carefully cross-validate models with a comparable number
of parameters. Figure 2 (left) shows that GLU networks
converge to a lower perplexity than the other approaches
on WikiText-103. Similar to gated linear units, the ReLU
has a linear path that lets the gradients easily pass through
the active units. In our experiments we observe that this
translates to much faster convergence for both the ReLU
and the GLU. On the other hand, neither Tanh nor GTU
have a linear path and thus suffer from vanishing gradients.

Comparing the GTU and Tanh models allows us to measure
the effect of gating since the Tanh model can be thought of

Language Modeling with Gated Convolutional Networks

as a GTU network with the sigmoid gating units removed.
The results (Figure 2, left) show that the gating units make
a vast difference. Both Tanh and GTU units suffer under
vanishing gradients since in the GTU both the inputs as
well as the gating units cut the gradients when the units
saturate. We argue that the difference between GTU and
Tanh indicates that gating units provide useful modeling
capabilities. The ReLU unit is not an exact ablation of the
gating units in the GLU, but it can be seen as a simplifica-
tion ReLU(X) = X ⊗ (X > 0) where the gates become
active depending on the sign of the input. However, also in
this case, GLU units lead to lower perplexity.

In Figure 2 (right) we repeat the same experiment on the
larger Google Billion Words dataset. We consider a fixed
time budget of 100 hours because of the considerable train-
ing time required for this task. Similar to WikiText-103
we see that gated linear units achieve the best results on
this problem. There is a gap of about 5 perplexity points
between the GLU and ReLU which is similar to the dif-
ference between the LSTM and RNN models measured by
(Jozefowicz et al., 2016) on the same dataset.

5.3. Non-linear Modeling

0 50 100
Hours

40

60

80

100

120

140

T
e
st

 P
e
rp

le
x
it

y

Linear
Bilinear
GLU

Figure 3. Learning curves on Google Billion Word for models
with varying degrees of non-linearity.

The experiments so far have shown that the gated linear unit
benefits from the linear path the unit provides compared
to other non-linearities. Next, we compare networks with
GLUs to purely linear networks and networks with bilinear
layers in order to measure the impact of the non-linear path
provided by the gates of the GLU. One motivation for this
experiment is the success of linear models on many natural
language processing tasks (Manning & Schütze, 1999).

We consider deep linear convolutional networks where the
layers lack the gating units of the GLU and take the form
hl(X) = X∗W+b. Stacking several layers on top of each

other is simply a factorization of the model which remains
linear up to the softmax, at which point it becomes log-
linear. Another variation of GLUs are bilinear layers (Mnih
& Hinton, 2007) which take the form hl(X) = (X ∗W +
b)⊗ (X ∗V + c). This is similar to GLUs but with linear
gating units instead.

Figure 3 shows that GLUs perform best, followed by bilin-
ear layers and then linear layers. Bilinear layers improve
over linear ones by more than 40 perplexity points, and the
GLU improves another 20 perplexity points over the bilin-
ear model. The linear model performs very poorly at per-
plexity 115 even compared to 67.6 of a Kneser-Ney 5-gram
model, even though the former has access to more context.
The linear gating units of the bilinear model provide a way
for the model to modulate the flow of information in the
network and the large reduction in perplexity shows that
this is important. Surprisingly the introduction of the lin-
ear gating units is enough to allow reaching 61 perplexity
on Google 1B which surpasses Kneser-Ney 5-gram models
and the non-linear neural model of (Ji et al., 2015). How-
ever, the non-linear gating units of the GLU ultimately per-
form better.

5.4. Network Depth

7 8 9 10 11 12 13
Depth

38.5

39.0

39.5

40.0

40.5

41.0

T
e
st

 P
e
rp

le
x
it

y

Figure 4. Impact of network depth on test perplexity for Google
Billion Word. Deeper models perform better.

Next we turn to the question of how network depth effects
the accuracy of our model. Figure 4 shows that perplexity
on Google Billion Word improves as we increase the depth
of the model. This also shows that good results are possible
with a number of layers smaller than the average sentence
length of 20 on GBW since we use 13 layers in this set-
ting. The GCNN in Table 1 builds context representations
by applying exactly 13 layers to each input while a recur-
rent model would pass information through 20 sequential
layers on average on this corpus.

Language Modeling with Gated Convolutional Networks

14 16 18 20 22 24 26 28
Context

38.5

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5
T
e
st

 P
e
rp

le
x
it

y

Figure 5. Test perplexity as a function of context for Google Billion Word (left) and Wiki-103 (right). We observe that models with
bigger context achieve better results but the results start diminishing quickly after a context of 20.

5.5. Context Size

Figure 5 shows the impact of context size for the gated
CNN. We tried different combinations of network depth
and kernel widths for each context size and chose the best
performing one for each size. Generally, larger contexts
improve accuracy but returns drastically diminish with win-
dows larger than 20 words, even for WikiText-103 where
we may condition on an entire Wikipedia article. This
means that the unlimited context offered by recurrent mod-
els is not strictly necessary for language modeling. Fur-
thermore, this finding is also congruent with the fact that
good performance with recurrent networks can be obtained
by truncating gradients after only 20 timesteps using trun-
cated back propgation through time. Figure 5 also shows
that WikiText-103 benefits much more from larger context
size than Google Billion Word as the performance degrades
more sharply with smaller contexts. WikiText-103 pro-
vides much more context than Google Billion Word where
the average sentence size is 20. However while the average
size of the documents are close to 4000 tokens, we find that
strong performance can be achieved with a context size as
low as 30 tokens.

5.6. Training Algorithms

In this section, we perform an ablation of weight normal-
ization and gradient clipping. We separately cross-validate
the hyper-parameters of each configuration to make the
comparison fair. Due to the high cost of each of these ex-
periments we only consider a single iteration over the train-
ing data. Figure 6 shows that both methods significantly
speed-up convergence. Weight normalization in particular
improves the speed by over two times. This speed-up is
partly due to the ability to use much larger learning rates
(1 instead of 0.01) than would otherwise be possible. Both
clipping and weight normalization add computational over-

head but it is small compared to the large gains in conver-
gence speed.

40000 80000 120000 160000
Updates

50

60

70

80

90

100

110

120

130

140
T
e
st

 P
e
rp

le
x
it

y

Without Clipping
Without WeightNorm
With Both

Figure 6. Effect of weight normalization and gradient clipping on
Google Billion Word.

6. Conclusion
We introduce a convolutional neural network for language
modeling with a novel gating mechanism. Compared to
recurrent neural networks, our approach builds a hierarchi-
cal representation of the input words that makes it easier
to capture long-range dependencies, similar in spirit to the
tree-structured analysis of linguistic grammar formalisms.
The same property eases learning since features are passed
through a fixed number of layers and non-linearities, un-
like for recurrent networks where the number of processing
steps differs depending on the position of the word in the
input. The results show that our gated convolutional net-
work achieves a new state of the art on WikiText-103. On
the larger Google Billion Word benchmark, we achieve a
new best result for models trained on a single GPU, thereby

Language Modeling with Gated Convolutional Networks

outperforming several strong LSTM results.

Acknowledgments
We would like to thank Jonas Gehring, Edouard Grave, Ar-
mand Joulin and Ronan Collobert for helpful discussions
related to this work.

References
Bengio, Yoshua, Ducharme, Réjean, Vincent, Pascal, and Jauvin,

Christian. A neural probabilistic language model. journal of
machine learning research, 3(Feb):1137–1155, 2003.

Chelba, Ciprian, Mikolov, Tomas, Schuster, Mike, Ge, Qi, Brants,
Thorsten, Koehn, Phillipp, and Robinson, Tony. One billion
word benchmark for measuring progress in statistical language
modeling. arXiv preprint arXiv:1312.3005, 2013.

Chen, Stanley F and Goodman, Joshua. An empirical study of
smoothing techniques for language modeling. In Proceedings
of the 34th annual meeting on Association for Computational
Linguistics, pp. 310–318. Association for Computational Lin-
guistics, 1996.

Collobert, Ronan, Kavukcuoglu, Koray, and Farabet, Clement.
Torch7: A Matlab-like Environment for Machine Learning. In
BigLearn, NIPS Workshop, 2011. URL http://torch.ch.

Dauphin, Yann N and Grangier, David. Predicting distri-
butions with linearizing belief networks. arXiv preprint
arXiv:1511.05622, 2015.

Glorot, Xavier and Bengio, Yoshua. Understanding the difficulty
of training deep feedforward neural networks. The handbook
of brain theory and neural networks, 2010.

Grave, E., Joulin, A., Cissé, M., Grangier, D., and Jégou, H.
Efficient softmax approximation for GPUs. ArXiv e-prints,
September 2016a.

Grave, E., Joulin, A., and Usunier, N. Improving Neural Lan-
guage Models with a Continuous Cache. ArXiv e-prints, De-
cember 2016b.

Gutmann, Michael and Hyvärinen, Aapo. Noise-contrastive esti-
mation: A new estimation principle for unnormalized statisti-
cal models.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015a.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 1026–1034,
2015b.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Ji, Shihao, Vishwanathan, SVN, Satish, Nadathur, Anderson,
Michael J, and Dubey, Pradeep. Blackout: Speeding up recur-
rent neural network language models with very large vocabu-
laries. arXiv preprint arXiv:1511.06909, 2015.

Jozefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer,
Noam, and Wu, Yonghui. Exploring the limits of language
modeling. arXiv preprint arXiv:1602.02410, 2016.

Kneser, Reinhard and Ney, Hermann. Improved backing-off for
m-gram language modeling. In Acoustics, Speech, and Signal
Processing, 1995. ICASSP-95., 1995 International Conference
on, volume 1, pp. 181–184. IEEE, 1995.

Koehn, Philipp. Statistical Machine Translation. Cambridge Uni-
versity Press, New York, NY, USA, 1st edition, 2010. ISBN
0521874157, 9780521874151.

LeCun, Yann and Bengio, Yoshua. Convolutional networks for
images, speech, and time series. The handbook of brain theory
and neural networks, 3361(10):1995, 1995.

Manning, Christopher D and Schütze, Hinrich. Foundations of
statistical natural language processing, 1999.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer Sen-
tinel Mixture Models. ArXiv e-prints, September 2016.

Mikolov, Tomáš, Martin, Karafiát, Burget, Lukáš, Cernocký, Jan,
and Khudanpur, Sanjeev. Recurrent Neural Network based
Language Model. In Proc. of INTERSPEECH, pp. 1045–1048,
2010.

Mnih, Andriy and Hinton, Geoffrey. Three new graphical models
for statistical language modelling. In Proceedings of the 24th
international conference on Machine learning, pp. 641–648.
ACM, 2007.

Morin, Frederic and Bengio, Yoshua. Hierarchical probabilistic
neural network language model. In Aistats, volume 5, pp. 246–
252. Citeseer, 2005.

Oord, Aaron van den, Kalchbrenner, Nal, and Kavukcuoglu,
Koray. Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759, 2016a.

Oord, Aaron van den, Kalchbrenner, Nal, Vinyals, Oriol, Espe-
holt, Lasse, Graves, Alex, and Kavukcuoglu, Koray. Condi-
tional image generation with pixelcnn decoders. arXiv preprint
arXiv:1606.05328, 2016b.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. On the
difficulty of training recurrent neural networks. In Proceedings
of The 30th International Conference on Machine Learning,
pp. 1310–1318, 2013.

Salimans, Tim and Kingma, Diederik P. Weight normalization: A
simple reparameterization to accelerate training of deep neural
networks. arXiv preprint arXiv:1602.07868, 2016.

Shazeer, Noam, Pelemans, Joris, and Chelba, Ciprian. Skip-gram
language modeling using sparse non-negative matrix probabil-
ity estimation. arXiv preprint arXiv:1412.1454, 2014.

Steedman, Mark. The syntactic process. 2002.

Sutskever, Ilya, Martens, James, Dahl, George E, and Hinton, Ge-
offrey E. On the importance of initialization and momentum in
deep learning. 2013.

Yu, Dong and Deng, Li. Automatic Speech Recognition: A Deep
Learning Approach. Springer Publishing Company, Incorpo-
rated, 2014. ISBN 1447157788, 9781447157786.

http://torch.ch

