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Abstract

Abstractive Sentence Summarization gener-
ates a shorter version of a given sentence while
attempting to preserve its meaning. We intro-
duce a conditional recurrent neural network
(RNN) which generates a summary of an in-
put sentence. The conditioning is provided by
a novel convolutional attention-based encoder
which ensures that the decoder focuses on the
appropriate input words at each step of genera-
tion. Our model relies only on learned features
and is easy to train in an end-to-end fashion on
large data sets. Our experiments show that the
model significantly outperforms the recently
proposed state-of-the-art method on the Giga-
word corpus while performing competitively
on the DUC-2004 shared task.

1 Introduction

Generating a condensed version of a passage while
preserving its meaning is known as text summariza-
tion. Tackling this task is an important step to-
wards natural language understanding. Summariza-
tion systems can be broadly classified into two cat-
egories. Extractive models generate summaries by
cropping important segments from the original text
and putting them together to form a coherent sum-
mary. Abstractive models generate summaries from
scratch without being constrained to reuse phrases
from the original text.

In this paper we propose a novel recurrent neu-
ral network for the problem of abstractive sentence
summarization. Inspired by the recently proposed
architectures for machine translation (Bahdanau et

al., 2014), our model consists of a conditional recur-
rent neural network, which acts as a decoder to gen-
erate the summary of an input sentence, much like
a standard recurrent language model. In addition, at
every time step the decoder also takes a condition-
ing input which is the output of an encoder module.
Depending on the current state of the RNN, the en-
coder computes scores over the words in the input
sentence. These scores can be interpreted as a soft
alignment over the input text, informing the decoder
which part of the input sentence it should focus on
to generate the next word. Both the decoder and en-
coder are jointly trained on a data set consisting of
sentence-summary pairs. Our model can be seen as
an extension of the recently proposed model for the
same problem by Rush et al. (2015). While they use
a feed-forward neural language model for genera-
tion, we use a recurrent neural network. Further-
more, our encoder is more sophisticated, in that it
explicitly encodes the position information of the in-
put words. Lastly, our encoder uses a convolutional
network to encode input words. These extensions
result in improved performance.

The main contribution of this paper is a novel
convolutional attention-based conditional recurrent
neural network model for the problem of abstractive
sentence summarization. Empirically we show that
our model beats the state-of-the-art systems of Rush
et al. (2015) on multiple data sets. Particularly no-
table is the fact that even with a simple generation
module, which does not use any extractive feature
tuning, our model manages to significantly outper-
form their ABS+ system on the Gigaword data set
and is comparable on the DUC-2004 task.



2 Previous Work

While there is a large body of work for generat-
ing extractive summaries of sentences (Jing, 2000;
Knight and Marcu, 2002; McDonald, 2006; Clarke
and Lapata, 2008; Filippova and Altun, 2013; Fil-
ippova et al., 2015), there has been much less re-
search on abstractive summarization. A count-based
noisy-channel machine translation model was pro-
posed for the problem in Banko et al. (2000). The
task of abstractive sentence summarization was later
formalized around the DUC-2003 and DUC-2004
competitions (Over et al., 2007), where the TOP-
IARY system (Zajic et al., 2004) was the state-of-
the-art. More recently Cohn and Lapata (2008)
and later Woodsend et al. (2010) proposed systems
which made heavy use of the syntactic features of
the sentence-summary pairs. Later, along the lines
of Banko et al. (2000), MOSES was used directly as
a method for text simplification by Wubben et al.
(2012). Other works which have recently been pro-
posed for the problem of sentence summarization in-
clude (Galanis and Androutsopoulos, 2010; Napoles
et al., 2011; Cohn and Lapata, 2013). Very recently
Rush et al. (2015) proposed a neural attention model
for this problem using a new data set for training and
showing state-of-the-art performance on the DUC
tasks. Our model can be seen as an extension of
their model.

3 Attentive Recurrent Architecture

Let x denote the input sentence consisting of a
sequence of M words x = [x1, . . . , xM ], where
each word xi is part of vocabulary V , of size
|V| = V . Our task is to generate a target sequence
y = [y1, . . . , yN ], of N words, where N < M ,
such that the meaning of x is preserved: y =
argmaxy P (y|x), where y is a random variable de-
noting a sequence of N words.

Typically the conditional probability is mod-
eled by a parametric function with parameters θ:
P (y|x) = P (y|x; θ). Training involves finding the
θ which maximizes the conditional probability of
sentence-summary pairs in the training corpus. If
the model is trained to generate the next word of the
summary, given the previous words, then the above
conditional can be factorized into a product of indi-

vidual conditional probabilities:

P (y|x; θ) =
N∏
t=1

p(yt|{y1, . . . , yt−1},x; θ). (1)

In this work we model this conditional probabil-
ity using an RNN Encoder-Decoder architecture, in-
spired by Cho et al. (2014) and subsequently ex-
tended in Bahdanau et al. (2014). We call our model
RAS (Recurrent Attentive Summarizer).

3.1 Recurrent Decoder
The above conditional is modeled using an RNN:

P (yt|{y1, . . . , yt−1},x; θ) = Pt = gθ1(ht, ct),

where ht is the hidden state of the RNN:

ht = gθ1(yt−1, ht−1, ct).

Here ct is the output of the encoder module (detailed
in §3.2). It can be seen as a context vector which is
computed as a function of the current state ht−1 and
the input sequence x.

Our Elman RNN takes the following form (El-
man, 1990):

ht = σ(W1yt−1 +W2ht−1 +W3ct)

Pt = ρ(W4ht +W5ct),

where σ is the sigmoid function and ρ is the soft-
max, defined as: ρ(ot) = eot/

∑
j e

oj and Wi

(i = 1, . . . , 5) are matrices of learnable parameters
of sizes W{1,2,3} ∈ Rd×d and W{4,5} ∈ Rd×V .

The LSTM decoder is defined as (Hochreiter and
Schmidhuber, 1997):

it = σ(W1yt−1 +W2ht−1 +W3ct)

i′t = tanh(W4yt−1 +W5ht−1 +W6ct)

ft = σ(W7yt−1 +W8ht−1 +W9ct)

ot = σ(W10yt−1 +W11ht−1 +W12ct)

mt = mt−1 � ft + it � i′t
ht = mt � ot
Pt = ρ(W13ht +W14ct).

Operator � refers to component-wise multiplica-
tion, and Wi (i = 1, . . . , 14) are matrices of learn-
able parameters of sizes W{1,...,12} ∈ Rd×d, and
W{13,14} ∈ Rd×V .



3.2 Attentive Encoder

We now give the details of the encoder which com-
putes the context vector ct for every time step t of
the decoder above. With a slight overload of nota-
tion, for an input sentence x we denote by xi the d
dimensional learnable embedding of the i-th word
(xi ∈ Rd). In addition the position i of the word
xi is also associated with a learnable embedding li
of size d (li ∈ Rd). Then the full embedding for
i-th word in x is given by ai = xi + li. Let us
denote by Bk ∈ Rq×d a learnable weight matrix
which is used to convolve over the full embeddings
of consecutive words. Let there be d such matrices
(k ∈ {1, . . . , d}). The output of convolution is given
by:

zik =

q/2∑
h=−q/2

ai+h · bkq/2+h, (2)

where bkj is the j-th column of the matrix Bk. Thus
the d dimensional aggregate embedding vector zi is
defined as zi = [zi1, . . . , zid]. Note that each word
xi in the input sequence is associated with one ag-
gregate embedding vector zi. The vectors zi can be
seen as a representation of the word which captures
the position in which it occurs in the sentence and
also the context in which it appears in the sentence.
In our experiments the width q of the convolution
matrix Bk was set to 5. To account for words at the
boundaries of x we first pad the sequence on both
sides with dummy words before computing the ag-
gregate vectors zi’s.

Given these aggregate vectors of words, we com-
pute the context vector ct (the encoder output) as:

ct =
M∑
j=1

αj,t−1xj , (3)

where the weights αj,t−1 are computed as

αj,t−1 =
exp(zj · ht−1)∑M
i=1 exp(zi · ht−1)

. (4)

3.3 Training and Generation

Given a training corpus S = {(xi,yi)}Si=1 of S
sentence-summary pairs, the above model can be
trained end-to-end using stochastic gradient descent

by minimizing the negative conditional log likeli-
hood of the training data with respect to θ:

L = −
S∑
i=1

N∑
t=1

logP (yit|{yi1, . . . , yit−1},xi; θ),

(5)
where the parameters θ constitute the parameters of
the decoder and the encoder.

Once the parametric model is trained we generate
a summary for a new sentence x through a word-
based beam search such that P (y|x) is maximized,
argmaxP (yt|{y1, . . . , yt−1},x). The search is pa-
rameterized by the number of paths k that are pur-
sued at each time step.

4 Experimental Setup

4.1 Datasets and Evaluation
Our models are trained on the annotated version of
the Gigaword corpus (Graff et al., 2003; Napoles
et al., 2012) and we use only the annotations for
tokenization and sentence separation while discard-
ing other annotations such as tags and parses. We
pair the first sentence of each article with its head-
line to form sentence-summary pairs. The data
is pre-processed in the same way as Rush et al.
(2015) and we use the same splits for training, val-
idation, and testing. For Gigaword we report re-
sults on the same randomly held-out test set of 2000
sentence-summary pairs as (Rush et al., 2015).1

We also evaluate our models on the DUC-2004
evaluation data set comprising 500 pairs (Over et
al., 2007). Our evaluation is based on three vari-
ants of ROUGE (Lin, 2004), namely, ROUGE-1
(unigrams), ROUGE-2 (bigrams), and ROUGE-L
(longest-common substring).

4.2 Architectural Choices
We implemented our models in the Torch library
(http://torch.ch/)2. To optimize our loss (Equa-
tion 5) we used stochastic gradient descent with
mini-batches of size 32. During training we mea-
sure the perplexity of the summaries in the valida-
tion set and adjust our hyper-parameters, such as the
learning rate, based on this number.

1We remove pairs with empty titles resulting in slightly dif-
ferent accuracy compared to Rush et al. (2015) for their sys-
tems.

2Our code can found at www://github.com/facebook/namas



Model Perplexity

Bag-of-Words 43.6
Convolutional (TDNN) 35.9
Attention-based (ABS) 27.1
RAS-Elman 18.9
RAS-LSTM 20.3

Table 1: Perplexity on the Gigaword validation set. Bag-of-

words, Convolutional (TDNN) and ABS are the different en-

coders of Rush et. al., 2015.

For the decoder we experimented with both the
Elman RNN and the Long-Short Term Memory
(LSTM) architecture (as discussed in § 3.1). We
chose hyper-parameters based on a grid search and
picked the one which gave the best perplexity on the
validation set. In particular we searched over the
number of hidden units H of the recurrent layer, the
learning rate η, the learning rate annealing schedule
γ (the factor by which to decrease η if the valida-
tion perplexity increases), and the gradient clipping
threshold κ. Our final Elman architecture (RAS-
Elman) uses a single layer with H = 512, η = 0.5,
γ = 2, and κ = 10. The LSTM model (RAS-
LSTM) also has a single layer with H = 512,
η = 0.1, γ = 2, and κ = 10.

5 Results

On the Gigaword corpus we evaluate our models in
terms of perplexity on a held-out set. We then pick
the model with best perplexity on the held-out set
and use it to compute the F1-score of ROUGE-1,
ROUGE-2, and ROUGE-L on the test sets, all of
which we report. For the DUC corpus however,
inline with the standard, we report the recall-only
ROUGE. As baseline we use the state-of-the-art
attention-based system (ABS) of Rush et al. (2015)
which relies on a feed-forward network decoder.
Additionally, we compare to an enhanced version
of their system (ABS+), which relies on a range of
separate extractive summarization features that are
added as log-linear features in a secondary learning
step with minimum error rate training (Och, 2003).

Table 1 shows that both our RAS-Elman and
RAS-LSTM models achieve lower perplexity than

RG-1 RG-2 RG-L

ABS 29.55 11.32 26.42
ABS+ 29.76 11.88 26.96
RAS-Elman (k = 1) 33.10 14.45 30.25
RAS-Elman (k = 10) 33.78 15.97 31.15
RAS-LSTM (k = 1) 31.71 13.63 29.31
RAS-LSTM (k = 10) 32.55 14.70 30.03

Luong-NMT 33.10 14.45 30.71

Table 2: F1 ROUGE scores on the Gigaword test set. ABS and

ABS+ are the systems of Rush et al. 2015. k refers to the size

of the beam for generation; k = 1 implies greedy generation.

RG refers to ROUGE. Rush et al. (2015) previously reported

ROUGE recall, while as we use the more balanced F-measure.

RG-1 RG-2 RG-L

ABS 26.55 7.06 22.05
ABS+ 28.18 8.49 23.81
RAS-Elman (k = 1) 29.13 7.62 23.92
RAS-Elman (k = 10) 28.97 8.26 24.06
RAS-LSTM (k = 1) 26.90 6.57 22.12
RAS-LSTM (k = 10) 27.41 7.69 23.06

Luong-NMT 28.55 8.79 24.43

Table 3: ROUGE results (recall-only) on the DUC-2004 test

sets. ABS and ABS+ are the systems of Rush et al. 2015. k

refers to the size of the beam for generation; k = 1 implies

greedy generation. RG refers to ROUGE.

ABS as well as other models reported in Rush et al.
(2015). The RAS-LSTM performs slightly worse
than RAS-Elman, most likely due to over-fitting.
We attribute this to the relatively simple nature of
this task which can be framed as English-to-English
translation with few long-term dependencies. The
ROUGE results (Table 2) show that our models com-
fortably outperform both ABS and ABS+ by a wide
margin on all metrics. This is even the case when we
rely only on very fast greedy search (k = 1), while
as ABS uses a much wider beam of size k = 50; the
stronger ABS+ system also uses additional extrac-
tive features which our model does not. These fea-
tures cause ABS+ to copy 92% of words from the
input into the summary, whereas our model copies
only 74% of the words leading to more abstractive
summaries. On DUC-2004 we report recall ROUGE
as is customary on this dataset. The results (Ta-
ble 3) show that our models are better than ABS+.
However the improvements are smaller than for Gi-



gaword which is likely due to two reasons: First,
tokenization of DUC-2004 differs slightly from our
training corpus. Second, headlines in Gigaword are
much shorter than in DUC-2004.

For the sake of completeness we also compare
our models to the recently proposed standard Neu-
ral Machine Translation (NMT) systems. In par-
ticular, we compare to a smaller re-implementation
of the attentive stacked LSTM encoder-decoder of
Luong et al. (2015). Our implementation uses
two-layer LSTMs for the encoder-decoder with 500
hidden units in each layer. Tables 2 and 3 report
ROUGE scores on the two data sets. From the tables
we observe that the proposed RAS-Elman model is
able to match the performance of the NMT model
of Luong at al. (2015). This is noteworthy be-
cause RAS-Elman is significantly simpler than the
NMT model at multiple levels. First, the encoder
used by RAS-Elman is extremely light-weight (at-
tention over the convolutional representation of the
input words), compared to Luong’s (a 2 hidden layer
LSTM). Second, the decoder used by RAS-Elman is
a single layer standard (Elman) RNN as opposed to
a multi-layer LSTM. In an independent work, Nalla-
pati et. al (2016) also trained a collection of standard
NMT models and report numbers in the same ball-
park as RAS-Elman on both datasets.

In order to better understand which component
of the proposed architecture is responsible for the
improvements, we trained the recurrent model with
Rush et. al., (2015)’s ABS encoder on a subset of the
Gigaword dataset. The ABS encoder, which does
not have the position features, achieves a final vali-
dation perplexity of 38 compared to 29 for the pro-
posed encoder, which uses position features as well
as context information. This clearly shows the bene-
fits of using the position feature in the proposed en-
coder.

Finally in Figure 1 we highlight anecdotal exam-
ples of summaries produced by the RAS-Elman sys-
tem on the Gigaword dataset. The first two examples
highlight typical improvements in the RAS model
over ABS+. Generally the model produces more flu-
ent summaries and is better able to capture the main
actors of the input. For instance in Sentence 1, RAS-
Elman correctly distinguishes the actions of “pepe”
from “ferreira”, and in Sentence 2 it identifies the
correct role of the “think tank”. The final two ex-

I(1): brazilian defender pepe is out for the rest of the season with
a knee injury , his porto coach jesualdo ferreira said saturday .
G: football : pepe out for season
A+: ferreira out for rest of season with knee injury
R: brazilian defender pepe out for rest of season with knee injury

I(2): economic growth in toronto will suffer this year because
of sars , a think tank said friday as health authorities insisted the
illness was under control in canada ’s largest city .
G: sars toll on toronto economy estimated at c$ # billion
A+: think tank under control in canada ’s largest city
R: think tank says economic growth in toronto will suffer this year

I(3): colin l. powell said nothing – a silence that spoke volumes
to many in the white house on thursday morning .
G: in meeting with former officials bush defends iraq policy
A+: colin powell speaks volumes about silence in white house
R: powell speaks volumes on the white house

I(4): an international terror suspect who had been under a con-
troversial loose form of house arrest is on the run , british home
secretary john reid said tuesday .
G: international terror suspect slips net in britain
A+: reid under house arrest terror suspect on the run
R: international terror suspect under house arrest

Figure 1: Example sentence summaries produced on Gi-
gaword. I is the input, G is the true headline, A is ABS+,
and R is RAS-ELMAN.

amples highlight typical mistakes of the models. In
Sentence 3 both models take literally the figurative
use of the idiom “a silence that spoke volumes,” and
produce fluent but nonsensical summaries. In Sen-
tence 4 the RAS model mistakes the content of a
relative clause for the main verb, leading to a sum-
mary with the opposite meaning of the input. These
difficult cases are somewhat rare in the Gigaword,
but they highlight future challenges for obtaining
human-level sentence summary.

6 Conclusion

We extend the state-of-the-art model for abstrac-
tive sentence summarization (Rush et al., 2015)
to a recurrent neural network architecture. Our
model is a simplified version of the encoder-decoder
framework for machine translation (Bahdanau et al.,
2014). The model is trained on the Gigaword corpus
to generate headlines based on the first line of each
news article. We comfortably outperform the previ-
ous state-of-the-art on both Gigaword data and the
DUC-2004 challenge even though our model does
not rely on additional extractive features.



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Michele Banko, Vibhu O Mittal, and Michael J Witbrock.
2000. Headline generation based on statistical trans-
lation. In Proceedings of the 38th Annual Meeting
on Association for Computational Linguistics, pages
318–325. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
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