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Abstract

Recent work on supertagging using a feed-
forward neural network achieved signifi-
cant improvements for CCG supertagging
and parsing (Lewis and Steedman, 2014).
However, their architecture is limited to
considering local contexts and does not
naturally model sequences of arbitrary
length. In this paper, we show how di-
rectly capturing sequence information us-
ing a recurrent neural network leads to fur-
ther accuracy improvements for both su-
pertagging (up to 1.9%) and parsing (up
to 1% F1), on CCGBank, Wikipedia and
biomedical text.

1 Introduction

Combinatory Categorial Grammar (CCG; Steed-
man, 2000) is a highly lexicalized formalism;
the standard parsing model of Clark and Curran
(2007) uses over 400 lexical categories (or su-
pertags), compared to about 50 POS tags for typ-
ical CFG parsers. This makes accurate disam-
biguation of lexical types much more challenging.
However, the assignment of lexical categories can
still be solved reasonably well by treating it as
a sequence tagging problem, often referred to as
supertagging (Bangalore and Joshi, 1999). Clark
and Curran (2004) show that high tagging accu-
racy can be achieved by leaving some ambiguity to
the parser to resolve, but with enough of a reduc-
tion in the number of tags assigned to each word
so that parsing efficiency is greatly increased.

In addition to improving parsing efficiency, su-
pertagging also has a large impact on parsing ac-
curacy (Curran et al., 2006; Kummerfeld et al.,
2010), since the derivation space of the parser
is determined by the supertagger, at both train-

*All work was completed before the author joined Face-
book.

ing and test time. Clark and Curran (2007) en-
hanced supertagging using a so-called adaptive
strategy, such that additional categories are sup-
plied to the parser only if a spanning analysis can-
not be found. This strategy is used in the de
facto C&C parser (Curran et al., 2007), and the
two-stage CCG parsing pipeline (supertagging and
parsing) continues to be the choice for most re-
cent CCG parsers (Zhang and Clark, 2011; Auli
and Lopez, 2011; Xu et al., 2014).

Despite the effectiveness of supertagging, the
most widely used model for this task (Clark and
Curran, 2007) has a number of drawbacks. First,
it relies too heavily on POS tags, which leads
to lower accuracy on out-of-domain data (Rimell
and Clark, 2008). Second, due to the sparse, in-
dicator feature sets mainly based on raw words
and POS tags, it shows pronounced performance
degradation in the presence of rare and unseen
words (Rimell and Clark, 2008; Lewis and Steed-
man, 2014). And third, in order to reduce com-
putational requirements and feature sparsity, each
tagging decision is made without considering any
potentially useful contextual information beyond a
local context window.

Lewis and Steedman (2014) introduced a feed-
forward neural network to supertagging, and ad-
dressed the first two problems mentioned above.
However, their attempt to tackle the third prob-
lem by pairing a conditional random field with
their feed-forward tagger provided little accuracy
improvement and vastly increased computational
complexity, incurring a large efficiency penalty.

We introduce a recurrent neural network-based
(RNN) supertagging model to tackle all the above
problems, with an emphasis on the third one.
RNNs are powerful models for sequential data,
which can potentially capture long-term depen-
dencies, based on an unbounded history of pre-
vious words (§2); similar to Lewis and Steedman
(2014) we only use distributed word representa-
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tions (§2.2). Our model is highly accurate, and by
integrating it with the C&C parser as its adaptive
supertagger, we obtain substantial accuracy im-
provements, outperforming the feed-forward setup
on both supertagging and parsing.

2 Supertagging with a RNN

2.1 Model
We use an Elman recurrent neural network (El-
man, 1990) which consists of an input layer xt,
a hidden state (layer) ht with a recurrent connec-
tion to the previous hidden state ht−1 and an out-
put layer yt. The input layer is a vector represent-
ing the surrounding context of the current word
at position t, whose supertag is being predicted.1

The hidden state ht−1 keeps a representation of all
context history up to the current word. The cur-
rent hidden state ht is computed using the current
input xt and hidden state ht−1 from the previous
position. The output layer represents probability
scores of all possible supertags, with the size of
the output layer being equal to the size of the lexi-
cal category set.

The parameterization of the network consists
of three matrices which are learned during super-
vised training. Matrix U contains weights be-
tween the input and hidden layers, V contains
weights between the hidden and output layers, and
W contains weights between the previous hidden
state and the current hidden state. The following
recurrence2 is used to compute the activations of
the hidden state at word position t:

ht = f(xtU + ht−1W), (1)

where f is a non-linear activation function; here
we use the sigmoid function f(z) = 1

1+e−z . The
output activations are calculated as:

yt = g(htV), (2)

where g is the softmax activation function g(zi) =
ezi∑
j ezj that squeezes raw output activations into a

probability distribution.

2.2 Word Embeddings
Our RNN supertagger only uses continuous vec-
tor representations for features and each feature

1This is different from some RNN models (e.g., Mikolov
et al. (2010)) where the input is a one-hot vector.

2We assume the input to any layer is a row vector unless
otherwise stated.

type has an associated look-up table, which maps
a feature to its distributed representation. In to-
tal, three feature types are used. The first type is
word embeddings: given a sentence of N words,
(w1, w2, . . . , wN ), the embedding feature of wt

(for 1 ≤ t ≤ N ) is obtained by projecting it onto
a n-dimensional vector space through the look-up
table Lw ∈ R|w|×n, where |w| is the size of the vo-
cabulary. Algebraically, the projection operation
is a simple vector-matrix product where a one-hot
vector bj ∈ R1×|w| (with zeros everywhere except
at the jth position) is multiplied with Lw:

ewt = bjLw ∈ R1×n, (3)

where j is the look-up index for wt.
In addition, as in Lewis and Steedman (2014),

for every word we also include its 2-character suf-
fix and capitalization as features. Two more look-
up tables are used for these features. Ls ∈ R|s|×m

is the look-up table for suffix embeddings, where
|s| is the suffix vocabulary size. Lc ∈ R2×m

is the look-up table for the capitalization embed-
dings. Lc contains only two embeddings, repre-
senting whether or not a given word is capitalized.

We extract features from a context window sur-
rounding the current word to make a tagging de-
cision. Concretely, with a context window of size
k, bk/2c words either side of the target word are
included. For a word wt, its continuous feature
representation is:

fwt = [ewt ; swt ; cwt ], (4)

where ewt ∈ R1×n, swt ∈ R1×m and cwt ∈
R1×m are the output vectors from the three differ-
ent look-up tables, and [ewt ; swt ; cwt ] denotes the
concatenation of three vectors and hence fwt ∈
R1×(n+2m). At word position t, the input layer of
the network xt is:

xt = [fwt−bk/2c ; . . . fwt ; . . . ; fwt+bk/2c ], (5)

where xt ∈ R1×k(n+2m) and the right-hand side is
the concatenation of all feature representations in
a size k context window.

We use pre-trained word embeddings
from Turian et al. (2010) to initialize look-
up table Lw, and we apply a set of word
pre-processing techniques at both training and
test time to reduce sparsity. All words are first
lower-cased, and all numbers are collapsed into
a single digit ‘0’. If a lower-cased hyphenated
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word does not have an entry in the pre-trained
word embeddings, we attempt to back-off to the
substring after the last hyphen. For compound
words and numbers delimited by “\/”, we attempt
to back-off to the substring after the delimiter.
After pre-processing, the Turian embeddings have
a coverage of 94.25% on the training data; for
out-of-vocabulary words, three separate randomly
initialized embeddings are used for lower-case
alphanumeric words, upper-case alphanumeric
words, and non-alphanumeric symbols. For
padding at the start and end of a sentence, the “un-
known” entry from the pre-trained embeddings is
used. Look-up tables Ls and Lc are also randomly
initialized, and all look-up tables are modified
during supervised training using backpropagation.

3 Experiments

Datasets and Baseline. We follow the standard
splits of CCGBank (Hockenmaier and Steedman,
2007) for all experiments using sections 2-21 for
training, section 00 for development and section
23 as in-domain test set. The Wikipedia corpus
from Honnibal et al. (2009) and the Bioinfer cor-
pus (Pyysalo et al., 2007) are used as two out-
of-domain test sets. We compare supertagging
accuracy with the MaxEnt C&C supertagger and
the neural network tagger of Lewis and Steed-
man (2014) (henceforth NN), and we also evaluate
parsing accuracy using these three supertaggers as
a front-end to the C&C parser. We use the same
425 supertag set used in both C&C and NN.

Hyperparameters and Training. For Lw, we
use the scaled 50-dimensional Turian embeddings
(n = 50 for Lw) as initialization. We have ex-
perimented during development with using 100-
dimensional embeddings and found no improve-
ments in the resulting model. Out-of-vocabulary
embedding values in Lw and all embedding values
in Ls and Lc are initialized with a uniform distri-
bution in the interval [−2.0, 2.0]. The embedding
dimension size m of Ls and Lc is set to 5. Other
parameters of the network {U,V,W} are initial-
ized with values drawn uniformly from the inter-
val [−2.0, 2.0], and are then scaled by their corre-
sponding input vector size. We experimented with
context window sizes of 3, 5, 7, 9 and 11 during
development and found a window size of 7 gives
the best performing model on the dev set. We use
a fixed learning rate of 0.0025 and a hidden state
size of 200.

Model Accuracy Time
C&C (gold POS) 92.60 -
C&C (auto POS) 91.50 0.57
NN 91.10 21.00
RNN 92.63 -
RNN+dropout 93.07 2.02

Table 1: 1-best tagging accuracy and speed com-
parison on CCGBank Section 00 with a single
CPU core (1,913 sentences), tagging time in secs.

To train the model, we optimize cross-entropy
loss with stochastic gradient descent using mini-
batched backpropagation through time (BPTT;
Rumelhart et al., 1988; Mikolov, 2012); the mini-
batch size for BPTT, again tuned on the dev set, is
set to 9.

Embedding Dropout Regularization. Without
any regularization, we found cross-entropy error
on the dev set started to increase while the error on
the training set was continuously driven to a very
small value (Fig. 1a). With the suspicion of over-
fitting, we experimented with l1 and l2 regulariza-
tion and learning rate decay but none of these tech-
niques gave any noticeable improvements for our
model. Following Legrand and Collobert (2014),
we instead implemented word embedding dropout
as a regularization for all the look-up tables, since
the capacity of our tagging model mainly comes
from the look-up tables, as in their system. We
observed more stable learning and better general-
ization of the trained model with dropout. Similar
to other forms of droput (Srivastava et al., 2014),
we randomly drop units and their connections to
other units at training time. Concretely, we apply
a binary dropout mask to xt, with a dropout rate
of 0.25, and at test time no mask is applied, but
the input to the network, xt, at each word position
is scaled by 0.75. We experimented during devel-
opment with different dropout rates, but found the
above choice to be optimal in our setting.

3.1 Supertagging Results

We use the RNN model which gives the high-
est 1-best supertagging accuracy on the dev set
as the final model for all experiments. Without
any form of regularization, the best model was ob-
tained at the 20th epoch, and it took 35 epochs for
the dropout model to peak (Fig. 1b). We use the
dropout model for all experiments and, unlike the
C&C supertagger, no tag dictionaries are used.

Table 1 shows 1-best supertagging accuracies
on the dev set. The accuracy of the C&C supertag-
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Figure 1: Learning curve and 1-best tagging accuracy of the RNN model on CCGBank Section 00. Plot
(c) shows ambiguity vs. multi-tagging accuracy for all supertaggers (auto POS).
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Figure 2: Multi-tagging accuracy for all supertagging models on CCGBank Section 23, Wikipedia and
Bio-GENIA data (auto POS).

RNN NN C&C (auto pos) C&C (gold pos)
β WORD SENT amb. WORD SENT amb. WORD SENT amb. WORD SENT amb.
0.075 97.33 66.07 1.27 96.83 61.27 1.34 96.34 60.27 1.27 97.34 67.43 1.27
0.030 98.12 74.39 1.46 97.81 70.83 1.58 97.05 65.50 1.43 97.92 72.87 1.43
0.010 98.71 81.70 1.84 98.54 79.25 2.06 97.63 70.52 1.72 98.37 77.73 1.72
0.005 99.01 84.79 2.22 98.84 83.38 2.55 97.86 72.24 1.98 98.52 79.25 1.98
0.001 99.41 90.54 3.90 99.29 89.07 4.72 98.25 80.24 3.57 99.17 87.19 3.00

Table 2: Multi-tagging accuracy and ambiguity comparison (supertags/word) at the default C&C β levels
on CCGBank Section 00.

Model Section 23 Wiki Bio
C&C (gold POS) 93.32 88.80 91.85
C&C (auto POS) 92.02 88.80 89.08
NN 91.57 89.00 88.16
RNN 93.00 90.00 88.27

Table 3: 1-best tagging accuracy compari-
son on CCGBank Section 23 (2,407 sentences),
Wikipedia (200 sentences) and Bio-GENIA (1,000
sentences).

ger drops about 1% with automatically assigned
POS tags, while our RNN model gives higher ac-
curacy (+0.47%) than the C&C supertagger with
gold POS tags. All timing values are obtained on
a single Intel i7-4790k core, and all implementa-
tions are in C++ except NN which is implemented
using Torch and Java, and therefore we believe the
efficiency of NN could be vastly improved with an
implementation with a lower-level language.

Table 2 compares different supertagging mod-
els for multi-tagging accuracy at the default β
levels used by the C&C parser on the dev set.
The β parameter determines the average number
of supertags assigned to each word (ambiguity)
by a supertagger when integrated with the parser;
categories whose probabilities are not within β
times the probability of the 1-best category are
pruned. At the first β level (0.075), the three su-
pertagging models give very close ambiguity lev-
els, but our RNN model clearly outperforms NN
and C&C (auto POS) in both word (WORD) and
sentence (SENT) level accuracies, giving similar
word-level accuracy as C&C (gold POS). For other
β levels (except β = 0.001), the RNN model gives
comparable ambiguity levels to the C&C model
which uses a tagdict, while being much more ac-
curate than both the other two models.
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LP LR LF SENT CAT cov.
C&C (normal) 85.18 82.53 83.83 31.42 92.39 100
C&C (hybrid) 86.07 82.77 84.39 32.62 92.57 100
C&C (normal + RNN) 86.74 84.58 85.65 34.13 93.60 100
C&C (hybrid + RNN) 87.73 84.83 86.25 34.97 93.84 100
C&C (normal) 85.18 84.32 84.75 31.73 92.83 99.01 (C&C cov)
C&C (hybrid) 86.07 84.49 85.28 32.93 93.02 99.06 (C&C cov)
C&C (normal + RNN) 86.81 86.01 86.41 34.37 93.80 99.01 (C&C cov)
C&C (hybrid + RNN) 87.77 86.25 87.00 35.20 94.04 99.06 (C&C cov)
C&C (normal + RNN) 86.74 86.15 86.45 34.33 93.81 99.42
C&C (hybrid + RNN) 87.73 86.41 87.06 35.17 94.05 99.42

Table 4: Parsing development results on CCGBank Section 00 (auto POS).
CCGBank Section 23 Wikipedia Bioinfer

LP LR LF cov. LP LR LF cov. LP LR LF cov.
C&C 86.24 84.85 85.54 99.42 81.58 80.08 80.83 99.50 77.78 76.07 76.91 95.40
C&C (+ NN) 86.71 85.56 86.13 99.92 82.65 81.36 82.00 100 79.77 78.62 79.19 97.40
C&C (+ RNN) 87.68 86.47 87.07 99.96 83.22 81.78 82.49 100 80.10 78.21 79.14 97.80
C&C 86.24 84.17 85.19 100 81.58 79.48 80.52 100 77.78 71.44 74.47 100
C&C (+ NN) 86.71 85.40 86.05 100 - - - - 79.77 75.35 77.50 100
C&C (+ RNN) 87.68 86.41 87.04 100 - - - - 80.10 75.52 77.74 100

Table 5: Parsing test results on all three domains (auto POS). We evaluate on all sentences (100%
coverage) as well as on only those sentences that returned spanning analyses (% cov.). RNN and NN
both have 100% coverage on the Wikipedia data.

Fig. 1c compares multi-tagging accuracies of all
the models on the dev set. For all models, the same
β levels are used (ranging from 0.075 to 10−4,
and all C&C default values are included). The
RNN model consistently outperforms other mod-
els across different ambiguity levels.

Table 3 shows 1-best accuracies of all models
on the test data sets (Bio-GENIA gold-standard
CCG lexical category data from Rimell and Clark
(2008) are used, since no gold categories are avail-
able in the Bioinfer data). With gold-standard POS

tags, the C&C model outperforms both the NN and
RNN models on CCGBank and Bio-GENIA; with
auto POS, the accuracy of the C&C model drops
significantly, due to its high reliance on POS tags.

Fig. 2 shows multi-tagging accuracies on all
test data (using β levels ranging from 0.075 to
10−6, and all C&C default values are included).
On CCGBank, the RNN model has a clear accu-
racy advantage, while on the other two data sets,
the accuracies given by the NN model are closer
to the RNN model at some ambiguity levels, rep-
resenting these data sets are still more challenging
than CCGBank. However, both the NN and RNN
models are more robust than the C&C model on the
two out-of-domain data sets.

3.2 Parsing Results

We integrate our supertagging model into the C&C

parser, at both training and test time, using all de-
fault parser settings; C&C hybrid model is used for

CCGBank and Wikipedia; the normal-form model
is used for the Bioinfer data, in line with Lewis and
Steedman (2014) and Rimell and Clark (2008).
Parsing development results are shown in Table 4;
for out-of-domain data sets, no separate develop-
ment experiments were done. Final results are
shown in Table 5, and we substantially improve
parsing accuracies on CCGBank and Wikipedia.
The accuracy of our model on CCGBank repre-
sents a F1 score improvement of 1.53%/1.85%
over the C&C baseline, which is comparable to
the best known accuracy reported in Auli and
Lopez (2011). However, our RNN-supertagging-
based model is conceptually much simpler, with
no change to the parsing model required at all.

4 Conclusion

We presented a RNN-based model for CCG su-
pertagging, which brings significant accuracy im-
provements for supertagging and parsing, on both
in- and out-of-domain data sets. Our supertagger
is fast and well-suited for large scale processing.
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