Unified self-supervised learning for speech, vision and NLP

Meta Al

Arun Babu

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Jiatao Gu

Naman Goyal

Wei-Ning Hsu

Alexei Baevski

Michael Auli

Kushal Lakhotia

Andros Tjandra

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve

Why Self-supervised Learning?

Supervised Machine Learning

potential train/test mismatch

Need to annotate lots of data!

Supervised Machine Learning

Need to annotate lots of data!

Supervised Machine Learning?

Self-supervised Learning

- Learn good data representations (structure, features etc.) without labels
- |Unlabeled data| >> |Labeled data|
- Use representations to solve the task

Supervised learning simultaneously performs representation learning of the data and associating these features with labels

Limitation: relies on labeled data to learn feature encoding

1/ representation learning of the data 2/ learn to associate labels with the representations

Reduces reliance on labeled data!

wav2vec 2.0

- Masked prediction with Transformer (similar to BERT).
- But predict what? Learned inventory of speech units with vector quantization!
- Learning task: Joint VQ & masked prediction

Unsupervised Speech Recognition

Speech-to-Text with no labels.

Comparison to Best Supervised Systems

Amount of labeled data used

data2vec: A Unified Objective for Self-supervised Learning

Self-supervised Learning

- NLP: BERT, GPT, ...
- Vision: MoCo, SimCLR, BYOL, DINO, MAE,
- Speech: wav2vec, CPC, APC, HuBERT, ...

Current State of Self-supervised Learning

- Many different algorithms
- Most algorithms developed for particular modality
- Little focus on algorithms that generalize across modalities

Underlying Learning Mechanisms

- General algorithm that works very well across modalities
 (Outperforms best algorithms in speech/vision and competitive in NLP)
- Same learning objective for each modality
- Idea: self-distillation of contextualized representations in a masked prediction setup

Related Work

Momentum teacher
 (Grill et al., '20, Caron et al., '21)

Teacher

Contextualized targets
 (Hsu et al., '21)

contextualized targets

self-distillation

- Modality specific feature encoder (CNN, embedding table, patch mapping)
- Common masking policy, but modality/dataset specific parameterization
- Identical context encoder (Transformer)
- Identical learning task

Vision Results

Speech & NLP Results

NLP Results

Teacher Representation Construction

Teacher Representation Construction

Target Context Size

Target Context Size

Limitations

- Modality specific feature encoder and masking parameters
- Requires two forward-passes

Conclusion

- A single learning objective can outperform the best modality-specific algorithms for vision/speech while being competitive on NLP.
- Contextualized targets lead to a rich SSL task and improve performance.
- Future work:
 - Thinks about multiple modalities from the outset
 - unified architectures / objectives (Perceiver IO etc.)

Thank you

Arun Babu

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Jiatao Gu

Naman Goyal

Wei-Ning Hsu

Alexei Baevski

Michael Auli

Kushal Lakhotia

Andros Tjandra

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve