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Self-supervised Learning

e Learn good data representations (structure, features etc.) without labels
e |Unlabeled data| >> |Labeled data|

e Use representations to solve the task



Output

Supervised learning simultaneously performs representation learning of the data
and associating these features with labels

Limitation: relies on labeled data to learn feature encoding
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) ) Data ) )

Output

Self-supervised learning:
1/ representation learning of the data
2/ learn to associate labels with the representations

Reduces reliance on labeled data!
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wav2vec 2.0

e Masked prediction with Transformer

e Contastieloss (similar to BERT).
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Unsupervised Speech Recognition

e Speech-to-Text with no labels.

Step 2: k-means cluster Step 3: Segment into
Step 1: Learn speech representations phonemic units
4 ) representations .
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Comparison to Best Supervised Systems

Amount of labeled data used
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data2vec: A Unified Objective for
Self-supervised Learning



Self-supervised Learning

e NLP: BERT, GPT, ...
e Vision: MoCo, SImCLR, BYOL, DINO, MAE, ....

e Speech: wav2vec, CPC, APC, HUBERT, ...
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Current State of Self-supervised Learning

e Many different algorithms
e Most algorithms developed for particular modality

e Little focus on algorithms that generalize across modalities
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Underlying Learning Mechanisms
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data2vec

e General algorithm that works very well across modalities
(Outperforms best algorithms in speech/vision and competitive in NLP)

e Same learning objective for each modality

e |dea: self-distillation of contextualized representations in a masked prediction
setup
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Related Work

e Momentum teacher
(Grill et al,, 20, Caron et al.,21)
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o Contextualized targets
(Hsu et al.,21)

Acoustic Unit Discovery System
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data2vec
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data2vec

Modality specific feat
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Vision Results
ViT-L on ImageNet-1K

top-1 accuracy on valid

MAE MaskFeat data2vec

Multiple models Single models
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Speech & NLP Results
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—N
4

O — wav2vec 2.0
% — HuBERT
% 9.4 WavLM
@ — data?2vec
S 7.8
Q
6.2
O
®
5 4.6 <
O
= 3
10m 1h 10h 100h 960h

Amount of labeled data

25



NLP Results
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Teacher Representation Construction
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Teacher Representation Construction
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Target Context Size
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Limitations

e Modality specific feature encoder and masking parameters

e Requires two forward-passes

29



Conclusion

e Asingle learning objective can outperform the best modality-specific algorithms for
vision/speech while being competitive on NLP.

e (Contextualized targets lead to a rich SSL task and improve performance.

e Future work:
e Thinks about multiple modalities from the outset

e unified architectures / objectives (Perceiver 10 etc.)

30



Arun Babu Alexis Steffen Henry Zhou Abdelrahman
Conneau Schneider Mohamed

Kushal Andros Tjandra  Kritika Singh  Yatharth Saraf Geoffrey Zweig
Lakhotia

Jiatao Gu

Qiantong Xu

IEVEE!
Likhomanenko

Wei-Ning Hsu  Alexei Baevski  Michael Auli

Paden Ronan Gabriel
Tomasello Collobert Synnaeve



