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Machine Translation This talk
Le (2012), Kalchbrenner (2013), 
Devlin (2014), Sutskever (2014),
Cho (2014), …
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WMT 2013                             9/10 times
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Train data:

…
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Kneser & Ney (1996)
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p(progress) p(in)
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How can we improve this?
• Or: how to capture relationships beyond 1.5 to 2.7 words?
• Neural nets: distributional representations make it easier to 

capture relationships
• Recurrent nets: easy to model variable-length sequences

France
Spain

dog
cat
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State of the art in language modeling (Mikolov 2011)

development<s> progress

More accurate than feed-forward nets (Sundermeyer 2013)

Recurrent network
History of inputs
up to current 
time-step
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Le (2012), Kalchbrenner (2013), Devlin (2014), Cho (2014), Sutskever (2014)
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Experimental setup
• WMT 2012 French-English translation task
• Data: 100M words
• Baseline: Phrase-based model similar to Moses
• Rescoring 
• Mini-batch gradient descent
• Class-structured output layer (Goodman, 1996)

15
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Phrase-based RNNLM RNNTM word-window
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+Discrete translation model

Koehn et al. (2003) Mikolov (2011)

WMT 2012 French-English, 100M words, phrase-based baseline, lattice rescoring
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• Language modeling: n-gram LM and neural net LM two components 
of log-linear model of translation

Neural nets vs discrete models
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Average: 2.7 words

ê = argmaxe

X

i

�ihi(f, e) h2(f, e) = log prnn(e)h1(f, e) = log plm(e)

log plm(e) =
5X

i=1

hi(f, e) log prnn(e) =
10X

i=6

hi(f, e)

• Split each model into five features, one for each n-gram order s.t. 

• Standard optimizer (MERT) to find weights for each n-gram order
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Banchs et al. (2005), Quirk & Menezes (2006)

n-gram models over MTUs:
! p(M1) p(M2|M1) p(M3|M1,M2) …
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Optimization

• Likelihood training very common
• Optimizing for evaluation metrics difficult, but empirically 

successful (Och 2003, Smith 2006, Chiang 2009, Gimpel 2010, Hopkins 2011) 
• Next: Task-specific training of neural nets for translation

Auli & Gao, ACL 2014
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Expected BLEU Training
(Smith 2006, He 2012, Gao 2014)

L:

Desired translation output

max

✓

X

e2E(f)

sBLEU(e, ẽ)p(e|f ; ✓)xBLEU:

Generated outputs
e.g. n-best, lattice

Gain function Model probability
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Scaling linear reordering models
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My other neural network projects
• Social media response generation with RNNs

building neural net-based conversational agents based on twitter 
conversations
 

• Semi-supervised phrase table expansion with word 
embeddings
using distributional word and phrase representations and
by mapping between distributional source and target spaces with RBVs
 

• CCG parsing & tagging with RNNs
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λy.λx.proved(x,y)

NP : 
marcel

NP : 
completeness

S\NP : 
λx.proved(x, completeness)

S : 
proved(marcel, completeness)

Zettlemoyer (2005, 2007), Bos (2008), Kwiatkowski (2010, 2013) Krishnamurthy (2012), Lewis (2013a,b)

Semantic CCG Parsing

Combinatory Categorial Grammar (CCG; Steedman 2000)
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How is this useful?

User query (Semantic) parsing

Marcel proved  completeness  

(S\NP)/NP : 
λy.λx.proved(x,y)

NP : 
marcel

NP : 
completeness

S\NP : 
λx.proved(x, completeness)

S : 
proved(marcel, completeness)

Knowledge Base

Answer

Parse failures and lexical ambiguity are a 
major source of errors in semantic parsing 

(Kwiatkowski 2013)



Integrated Parsing & Tagging

pi,j =
1
Z

fi,jei,jbi,joi,j

forward-backward

inside-outside

parsing factor

supertagging factor

Marcel completeness  proved  

Auli & Lopez ACL 2011a,b
Auli & Lopez EMNLP 2011

with belief propagation, dual decomposition and softmax-margin training
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....

Recurrent nets for CCG supertagging & parsing
with Wenduan Xu 

Marcel provedNP S\NP/NP

tagging parsing

CRF (Clark & Curran ’07) 91.5 85.3

FFN (Lewis & Steedman, ’14) 91.5 86.0

RNN 92.3 86.5



Summary
• Two RNN translation models
• Neural nets help most when discrete models sparse
• Task-specific objective gives best performance
• Next: Better modeling of source-side, e.g., bi-directional 

RNNs, different architectures


