Learning to translate with neural networks

Michael Auli

Neural networks for text processing

• Similar words near each other

Neural networks for text processing

- Similar words near each other
- Changing model parameters for one example effects similar words in similar contexts

Neural networks for text processing

- Similar words near each other
- Changing model parameters for one example effects similar words in similar contexts
- Traditional discrete models treat each word separately

Neural networks

Error $26\% \rightarrow 15\%$ (Krizhevsky 2012)

Error 27% → 18 % (Hinton 2012)

Language Modeling PPLX 141 → 101 (Mikolov 2011)

Neural networks

Error $26\% \rightarrow 15\%$ (Krizhevsky 2012)

Error $27\% \rightarrow 18\%$ (Hinton 2012)

Language Modeling

PPLX 141 \rightarrow 101 (Mikolov 2011)

Machine Translation

This talk Le (2012), Kalchbrenner (2013), Devlin (2014), Sutskever (2014), Cho (2014), ...

What happened in MT over the past 10 years?

What happened in MT over the past 10 years?

"Learning **simple models** from large bi-texts is a solved problem" (Lopez & Post, 2013)

What happened in MT over the past 10 years?

"Learning simple models from large bi-texts is a solved problem"

WMT 2013

(Lopez & Post, 2013)

9/10 times

本 地区 的 发展和 进步。

development and progress of the region .

Translation modeling

Translation modeling

Language modeling

Translation modeling

Language modeling

Optimization

Translation modeling

Language modeling

Optimization

Reordering

Auli et al., EMNLP 2013; Hu et al., EACL 2014

Language modeling

Optimization

Auli & Gao, ACL 2014

Reordering

Discrete phrase-based translation

本 地区 的 发展 和 进步 。

development and progress of the region .

本 地区 的	发展 和	进步	0	
--------	------	----	---	--

development	and progress	of the region		
-------------	--------------	---------------	--	--

Koehn et al. (2003) Discrete phrase-based translation

Koehn et al. (2003) Discrete phrase-based translation

Kneser & Ney (1996) Discrete n-gram language modeling

p(progress in the region) =

Kneser & Ney (1996) Discrete n-gram language modeling

p(progress in the region) =

Train data:

. . .

development and progress of the region. in ...

Kneser & Ney (1996)

Discrete n-gram language modeling

p(progress in the region) =
p(progress) p(in)
p(the) p(region | the)

Train data:

... development and progress of the region. in

Does not include out-of-vocabulary tokens

Kneser & Ney (1996)

Discrete n-gram language modeling

p(progress in the region) =
p(progress) p(in)
p(the) p(region | the)

Train data:

... development and progress of the region. in

How can we improve this?

- Or: how to capture relationships beyond 1.5 to 2.7 words?
- Neural nets: distributional representations make it easier to capture relationships
- Recurrent nets: easy to model variable-length sequences

This talk

Auli et al., EMNLP 2013; Hu et al., EACL 2014

Language modeling

Optimization

Auli & Gao, ACL 2014 🏼

Reordering Auli et al., EMNLP 2014

This talk

Language modeling

Optimization

Auli & Gao, ACL 2014

Reordering Auli et al., EMNLP 2014

e.g. bigram LM

e.g. bigram LM p(progress I and) V V U W U $Dependence \text{ on } previous time step}$ nt

e.g. bigram LM p(progress | and) V $h_t = \sigma(Ux_t + Wh_{t-1})$ VW U 0 0 0 1 0 and U W 0 0 0 1 0

<s> development

State of the art in language modeling (Mikolov 2011) More accurate than feed-forward nets (Sundermeyer 2013)

Combined language and translation model

本 地区 的 发展 和 进步

Combined language and translation model 本地区的发展和进步 Auli et al., EMNLP 2013

Combined language and translation model

本地区的发展和进步

Combined language and translation model

本 地区 的 发展 和 进步

S

Entire source sentence representation

Combined language and translation model 本地区的发展和进步

 $h_t = \sigma(Ux_t + Wh_{t-1} + Fs)$

Combined language and translation model 本地区的发展和进步 $h_t = \sigma(Ux_t + Wh_{t-1} + Fs)$ ()

Source word-window

Combined language and translation model 本 地区 的 发展 和 进步 $h_t = \sigma(Ux_t + Wh_{t-1} + Fs) \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$ Source word-window

< s >

Combined language and translation model 本 地区 的 发展 和 进步 $h_t = \sigma(Ux_t + Wh_{t-1} + Fs) \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$ Source word-window development < s >

Combined language and translation model 本地区的发展和进步

 $h_t = \sigma(Ux_t + Wh_{t-1} + Fs)$

Source word-window

<s> development

Combined language and translation model 本地区的发展和进步 $h_t = \sigma(Ux_t + Wh_{t-1} + Fs)$ ()

Source word-window

<s> development

Le (2012), Kalchbrenner (2013), Devlin (2014), Cho (2014), Sutskever (2014)

Experimental setup

- WMT 2012 French-English translation task
- Data: 100M words
- Baseline: Phrase-based model similar to Moses
- Rescoring
- Mini-batch gradient descent
- Class-structured output layer (Goodman, 1996)

Does the neural model learn to translate? -Discrete translation model

WMT 2012 French-English, 100M words, phrase-based baseline, n-best rescoring

Does the neural model learn to translate? -Discrete translation model

WMT 2012 French-English, 100M words, phrase-based baseline, n-best rescoring

Does the neural model learn to translate? -Discrete translation model

WMT 2012 French-English, 100M words, phrase-based baseline, n-best rescoring

Improving a phrase-based baseline +Discrete translation model

WMT 2012 French-English, 100M words, phrase-based baseline, lattice rescoring

Improving a phrase-based baseline +Discrete translation model

WMT 2012 French-English, 100M words, phrase-based baseline, lattice rescoring

Combining recurrent nets with discrete models

Auli & Gao, ACL 2014

Combining recurrent nets with discrete models

Combining recurrent nets with discrete models Auli & Gao, ACL 2014

• Neural models more robust when discrete models rely on sparse estimates?

Average: 2.7 words

- Neural models more robust when discrete models rely on sparse estimates?
- Language modeling: n-gram LM and neural net LM two components of log-linear model of translation

 $\hat{e} = \operatorname{argmax}_{e} \sum_{i} \lambda_{i} h_{i}(f, e) \qquad h_{1}(f, e) = \log p_{lm}(e) \qquad h_{2}(f, e) = \log p_{rnn}(e)$

- Neural models more robust when discrete models rely on sparse estimates?
- Language modeling: n-gram LM and neural net LM two components of log-linear model of translation

 $\hat{e} = \operatorname{argmax}_{e} \sum_{i} \lambda_{i} h_{i}(f, e) \qquad h_{1}(f, e) = \log p_{lm}(e) \qquad h_{2}(f, e) = \log p_{rnn}(e)$

• Split each model into five features, one for each n-gram order s.t.

$$\log p_{lm}(e) = \sum_{i=1}^{5} h_i(f, e) \qquad \log p_{rnn}(e) = \sum_{i=6}^{10} h_i(f, e)$$

Average: 2.7 words

n-gram order

- Neural models more robust when discrete models rely on sparse estimates?
- Language modeling: n-gram LM and neural net LM two components of log-linear model of translation

 $\hat{e} = \operatorname{argmax}_{e} \sum_{i} \lambda_{i} h_{i}(f, e) \qquad h_{1}(f, e) = \log p_{lm}(e) \qquad h_{2}(f, e) = \log p_{rnn}(e)$

• Split each model into five features, one for each n-gram order s.t.

$$\log p_{lm}(e) = \sum_{i=1}^{5} h_i(f, e) \qquad \log p_{rnn}(e) = \sum_{i=6}^{10} h_i(f, e)$$

Average: 2.7 words

n-gram orde

• Standard optimizer (MERT) to find weights for each n-gram order

Average: 2.7 words

40%

Average: 2.7 words

Optimzer: MERT

Average: 2.7 words

40%

本 地区 的 发展 和 进步

development and progress of the region

n-gram models over MTUs: p(M1) p(M2 | M1) p(M3 | M1,M2) ...

Banchs et al. (2005), Quirk & Menezes (2006)

Reduce sparsity by bag of words representation

 $\langle S \rangle$

Reduce sparsity by bag of words representation

Reduce sparsity by bag of words representation

This talk

Language modeling

Optimization

Auli & Gao, ACL 2014

Reordering Auli et al., EMNLP 2014

Back propagation with cross entropy error

Optimization

Auli & Gao, ACL 2014

- Likelihood training very common
- Optimizing for evaluation metrics difficult, but empirically successful (Och 2003, Smith 2006, Chiang 2009, Gimpel 2010, Hopkins 2011)

Optimization

Auli & Gao, ACL 2014

- Likelihood training very common
- Optimizing for evaluation metrics difficult, but empirically successful (Och 2003, Smith 2006, Chiang 2009, Gimpel 2010, Hopkins 2011)
- Next: Task-specific training of neural nets for translation

BLEU Metric (Bilingual Evaluation Understudy; Papineni 2002)

$$\text{BLEU} = \exp\left(\sum_{n=1}^{4} \frac{1}{4} \log p_n\right) \text{ BP}$$

Human: development and progress of the region

System: advance and progress of region

Expected BLEU Training (Smith 2006, He 2012, Gao 2014)

 $\max_{\theta} p(\tilde{\boldsymbol{e}}|f;\theta)$

L:

Expected BLEU Training (Smith 2006, He 2012, Gao 2014)

Desired translation output $\max_{\theta} p(\tilde{\underline{e}}|f;\theta)$

L:

Expected BLEU Training

本 地区 的 发展 和 进步

Human: development and progress of the region

Expected BLEU Training

本 地区 的 发展 和 进步

Human: development and progress of the region

advance and progress of the region development and progress of this province progress of this region

Expected BLEU Training

本 地区 的 发展 和 进步

Human: development and progress of the region

	sBLEU	
advance and progress of the region	0.8	
development and progress of this province	0.5	
progress of this region	0.3	

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f;\theta)$	
advance and progress of the region	0.8	0.2	
development and progress of this province	0.5	0.3	
progress of this region	0.3	0.5	

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f;\theta)$	
advance and progress of the region	0.8	0.2	
development and progress of this province	0.5	0.3	
progress of this region	0.3	0.5	

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f;\theta)$	
advance and progress of the region	0.8	0.2	
development and progress of this province	e 0.5	0.3	
progress of this region	0.3	0.5	

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f;\theta)$	
advance and progress of the region	0.8	0.2	
development and progress of this province	0.5	0.3	
progress of this region	0.3	0.5	

$$\text{xBLEU} = \sum_{e \in E(f)} \text{sBLEU}(e, \tilde{e}) p(e|f; \theta) = 0.5$$

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f;\theta)$	δ_t
advance and progress of the region	0.8	0.2	0.3
development and progress of this province	0.5	0.3	0
progress of this region	0.3	0.5	-0.2

$$\text{xBLEU} = \sum_{e \in E(f)} \text{sBLEU}(e, \tilde{e}) p(e|f; \theta) = 0.5$$

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f;\theta)$	δ_t	$p_{t+1}(e f;\theta)$
advance and progress of the region	0.8	0.2	0.3	0.5
development and progress of this province	0.5	0.3	0	0.3
progress of this region	0.3	0.5	-0.2	0.2

$$\text{xBLEU} = \sum_{e \in E(f)} \text{sBLEU}(e, \tilde{e}) p(e|f; \theta) = 0.5$$

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f;\theta)$	δ_t	$p_{t+1}(e f;\theta)$
advance and progress of the region	0.8	0.2	0.3	0.5
development and progress of this province	0.5	0.3	0	0.3
progress of this region	0.3	0.5	-0.2	0.2

$$\text{xBLEU} = \sum_{e \in E(f)} \text{sBLEU}(e, \tilde{e}) p(e|f; \theta) = 0.5$$

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f;\theta)$	δ_t	$p_{t+1}(e f;\theta)$
advance and progress of the region	0.8	0.2	0.3	0.5
development and progress of this province	0.5	0.3	0	0.3
progress of this region	0.3	0.5	-0.2	0.2

$$\text{xBLEU} = \sum_{e \in E(f)} \text{sBLEU}(e, \tilde{e}) p(e|f; \theta) = 0.5 \rightarrow 0.6$$

Results

Results

Scaling linear reordering models xBLEU training of millions of linear features

Auli et al., EMNLP 2014

Scaling linear reordering models

My other neural network projects

- Social media response generation with RNNs building neural net-based conversational agents based on twitter conversations
- Semi-supervised phrase table expansion with word embeddings using distributional word and phrase representations and by mapping between distributional source and target spaces with RBVs
- CCG parsing & tagging with RNNs

Semantic CCG Parsing

Zettlemoyer (2005, 2007), Bos (2008), Kwiatkowski (2010, 2013) Krishnamurthy (2012), Lewis (2013a,b)

Combinatory Categorial Grammar (CCG; Steedman 2000)

How is this useful?

How is this useful?

User query

(Semantic) parsing

Knowledge Base

• F-measure loss for parsing sub-model (+DecF₁).

Belief propagation for inference.

Hamming loss for supertagging sub-model (+Tagger).

Fowler & Penn (2010)

best CCG parsing results to date

Auli & Lopez EMNLP 2011

87.5 87.0 86.5 85.9 85.4 ■ C&C '07 ■ Petrov-I5 ■ Xu '14 ■ Belief Propagation ■ +F1 Loss

- F-measure loss for parsing sub-model (+DecF₁).
 - Hamming loss for supertagging sub-model (+Tagger).

best CCG parsing results to date

Auli & Lopez EMNLP 2011

• Belief propagation for inference.

• F-measure loss for parsing sub-model (+DecF₁).

Belief propagation for inference.

• Hamming loss for supertagging sub-model (+Tagger).

best CCG parsing results to date

Auli & Lopez EMNLP 2011

• F-measure loss for parsing sub-model (+DecF₁).

Belief propagation for inference.

Hamming loss for supertagging sub-model (+Tagger).

best CCG parsing results to date

Auli & Lopez EMNLP 2011

- F-measure loss for parsing sub-model (+DecF₁).
- Hamming loss for supertagging sub-model (+Tagger).

best CCG parsing results to date

Auli & Lopez EMNLP 2011

• Belief propagation for inference.

• F-measure loss for parsing sub-model (+DecF₁).

Belief propagation for inference.

• Hamming loss for supertagging sub-model (+Tagger).

best CCG parsing results to date

Auli & Lopez EMNLP 2011

Recurrent nets for CCG supertagging & parsing

with Wenduan Xu

Recurrent nets for CCG supertagging & parsing

with Wenduan Xu	
	1

	tagging	parsing
CRF (Clark & Curran '07)	91.5	85.3
FFN (Lewis & Steedman, '14)	91.5	86.0
RNN	92.3	86.5

Summary

- Two RNN translation models
- Neural nets help most when discrete models sparse
- Task-specific objective gives best performance
- Next: Better modeling of source-side, e.g., bi-directional RNNs, different architectures