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for one example effects similar
words in similar contexts

* Traditional discrete models
treat each word separately
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Discrete n-gram language modeling

p(progress in the region) = 407 Average: 2.7 words
p(progress) p(in) 30%

p(the) p(region | the)
20%
Train data: 4
oo 10%
development and progress of I
| 1 2 3

the region. in 0%

\//— n-gram order

Does not include out-of-vocabulary tokens




How can we improve this?

* Or: how to capture relationships beyond 1.5 to 2.7 words?

* Neural nets: distributional representations make it easier to
capture relationships

* Recurrent nets: easy to model variable-length sequences
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Recurrent network
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development progress

State of the art in language modeling ixotov 2011)

More accurate than feed-forward nets sundermeyer2013)



Combined language and translation model
KK 1 RRE A b FEIR

Auli et al., EMNLP 2013



Combined language and translation model
KK 1 RRE A b FEIR

Auli et al., EMNLP 2013



Combined language and translation model
KK 1 RRE A b FEIR

Auli et al, EMNLP 2013
+ 4+ o+ o+ o+



Combined language and translation model
A X ¥ KRR R EED ElizIR
Auli et z;i., EMNLP 2013

Entire source sentence
representation



Combined language and translation model
KK 1 RRE A b FEIR

Auli et al., EMNLP 2013
hi =o(Uxy + Why_1 + F's)

Entire source sentence
representation

<S>



Combined language and translation model
KK 1 RRE A b FEIR

Auli et al., EMNLP 2013
hi =o(Uxy + Why_1 + F's)

Entire source sentence
representation
<S>

development



Combined language and translation model
KK 1 RRE A b FEIR

Auli et al., EMNLP 2013
hi =o(Uxy + Why_1 + F's)

Entire source sentence
‘ representation

development




Combined language and translation model
KK 1 RRE A b FEIR

Auli et al., EMNLP 2013
hi =o(Uxy + Why_1 + F's)

Entire source sentence
‘ representation

development




Combined language and translation model
KK 1 RRE A b FEIR

Auli et al., EMNLP 2013
h Uxt + Wht 1+ FS

Entire source sentence
‘ representation

development




Combined language and translation model
KK 1 RRE A b FEIR

Auli et al., EMNLP 2013
h Uxt + Wht 1+ FS

Entire source sentence
‘ representation

development progress




Combined language and translation model
AWK 1ORE RS

hi =o(Uxy + Why_1 + F's)



Combined language and translation model
AWK 1ORE RS

htza(Uxt-l—Wht_l—I—Fs)( )

Source word-window



Combined language and translation model
AWK 1ORE RS

he = o(Uzy + Why_1 + F's) ( )

/ ' Source word-window
<S>



Combined language and translation model
AWK 1ORE RS

htza(Uxt-l—Wht_l—I—Fs)( )

/ Source word-window
<S>

development



Combined language and translation model
AWK 1ORE RS

hi =o(Uxy + Why_1 + F's)

Source word-window

/N

development



Combined language and translation model
AWK 1ORE RS

hi =o(Uxy + Why_1 + F's) ( )

Source word-window

/N

development



Combined language and translation model
AWK 1ORE RS

he = o(Uzy + Why_q + Fs) ( )

/ Source word-window

/\ /N

development




Combined language and translation model
AWK 1ORE RS

hi =o(Uxy + Why_1 + F's) ( )

/ Source word-window

/\ /\

development




Combined language and translation model
AWK 1ORE RS

hi =o(Uxy + Why_1 + F's) ( )

Source word-window

/\ /\

development



Combined language and translation model
AWK 1ORE RS

hi =o(Uxy + Why_1 + F's) ( )
’ \ Source word-window

/\ /\ /\

development




Combined language and translation model
AWK 1ORE RS

hi =o(Uxy + Why_1 + F's) ( )
' ’ \ Source word-window

/\ /\ /\

development progress




Combined language and translation model
AWK 1ORE RS

hi =o(Uxy + Why_1 + F's) ( )
' ’ \ Source word-window

/\ /\ /\

development progress

Le (2012), Kalchbrenner (2013), Devlin (2014), Cho (2014), Sutskever (2014)



Experimental setup

* WMT 2012 French-English translation task

* Data: 100M words

* Baseline: Phrase-based model similar to Moses
* Rescoring

* Mini-batch gradient descent

* Class-structured output layer (Goodman, 199)
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* Neural models more robust when discrete models rely on sparse
estimates?

* Language modeling: n-gram LM and neural net LM two components
of log-linear model of translation

€= argmae Z )\th(fa 6) hl(fa 6) — lOg plm(e) hQ(fa 6) — ZOQ prnn(e)

* Split each model into five features, one for each n-gram order s.t.
5} 10
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1=1 1=6

* Standard optimizer (MERT) to find weights for each n-gram order
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M1l M2 M3

A HixX K n-gram models over MTUs:
the region  of 7 p(M1) p(M21M1) p(M31M1,M2) ...

Banchs et al. (2005), Quirk & Menezes (2006)
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Back propagation with cross entropy error
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Optimization

Auli & Gao, ACL 2014 %ﬁi!«

* Likelihood training very common

* Optimizing for evaluation metrics ditficult, but empirically

SUCCQSSfUl (Och 2003, Smith 2006, Chiang 2009, Gimpel 2010, Hopkins 2011)

* Next: Task-specific training of neural nets for translation
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xBLEU:

Generated outputs

Expected BLEU Training

(Smith 2006, He 2012, Gao 2014)

Desired translation output

/

mthp(é\f ;0)

mélx Z sBLE
ecE(f)

e

e.g. n-best, lattice

U(e, €)plelf;0)

\

Gain function = Model probability
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xBLEU training of millions of linear features

BLEU

Scaling linear reordering models

Auli et al., EMNLP 2014 mﬁ

28.0
+2.0
271
26.3
25.4
24.5
Baseline 4.5K 9K 900K 3M
Features

26.6

26.4

26.2

26.0

25.8

25.6

+0.7

news2011

2K

4K 8K 16K 32K 64K 136K 272K

Training set size



My other neural network projects

* Social media response generation with RNNs

building neural net-based conversational agents based on twitter
conversations

* Semi-supervised phrase table expansion with word )
embeddings

using distributional word and phrase representations and
by mapping between distributional source and target spaces with RBVs

* CCG parsing & tagging with RNNs n



Semantic CCG Parsing

Zettlemoyer (2005, 2007), Bos (2008), Kwiatkowski (2010, 2013) Krishnamurthy (2012), Lewis (2013a,b)

Marcel proved completeness
1 1 1
NP : (S\NP)/NP : NP :
marcel Ay.Ax.proved(x,y) completeness
S\NP:

Ax.proved(x, completeness)

S:
proved(marcel, completeness)

Combinatory Categorial Grammar (CCG; Steedman 2000)



How is this useful?

Marcel proved completeness
NP : (S\NP)/NP : NP : ! )
marcel Ay.hx.proved(x,y) completeness w
——
N oo Answer
S\NP: 3

Nrovcd(x, completeness) v
S. / S L~

proved(marcel, completeness)

User query (Semantic) parsing Knowledge Base



How is this useful?

? Parse failures and lexical ambiguity are a

major source of errors in semantic parsing nswer
(Kwiatkowski 2013)

User query (Semantic) parsing Knowledge Base



Integrated Parsing & Tagging

A Auli & Lopez ACL 2011a,b

with belief propagation, dual decomposition and softmax-margin training B Al & Lopez EMNLP 2011

1
Pij = - Jij€ijbij0i;

parsing factor

inside-outside

supertagging factor forward-backward

Marecel prove completeness



Integrated Parsing & Tagging
® F-measure loss for parsing sub-model (+DecF). r’ Auli & Lopez EMNLP 2011

® Hamming loss for supertagging sub-model (+Tagger). best CCG parsing

. : i results to date
® Belief propagation for inference.
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Integrated Parsing & Tagging

® F-measure loss for parsing sub-model (+DecF). 'i Auli & Lopez EMNLP 2011

® Hamming loss for supertagging sub-model (+Tagger).

best CCG parsing
results to date

® Belief propagation for inference.

Labelled F-measure

87.5 +1.5
87.0
86.5
85.9
85.4
M Cc&C’07 B Petrov-I5 B Xu‘l4 Belief Propagation Wl +FI Loss

Fowler & Penn (2010)



Recurrent nets for CCG supertagging & parsing

with Wenduan Xu B

Marcel NP proved S\NP/NP




Recurrent nets for CCG supertagging & parsing

with Wenduan Xu I“ !

i

Marcel NP proved S\NP/NP

tagging | parsing
CRF (Clark & Curran *07) 91.5 85.3
FFN (Lewis & Steedman,’14) 91.5 86.0
RNN 92.3 86.5



Summary

* Two RNN translation models
* Neural nets help most when discrete models sparse
* Task-specific objective gives best performance

* Next: Better modeling of source-side, e.g., bi-directional
RNNs, different architectures



