
Integrated Supertagging and
Parsing

Michael Auli !
University of Edinburgh

Marcel proved completeness

Parsing

Marcel proved completeness

Parsing

NP NPVBD

VP

S

Marcel proved completeness

CCG Parsing

(S\NP)/NPNP NP

S\NP

S

Combinatory Categorial Grammar (CCG; Steedman 2000)

Marcel proved completeness

CCG Parsing

NP NP(S\NP)/NP

S\NP

S

<proved, (S\NP)/NP, completeness>

Marcel proved completeness

CCG Parsing

NP NP(S\NP)/NP

S\NP

S

<proved, (S\NP)/NP, completeness>
<proved, (S\NP)/NP, Marcel>

Why CCG Parsing?

• MT: Can analyse nearly any span in a sentence  
(Auli ’09; Mehay ‘10; Zhang & Clark 2011; Weese et. al. ’12)  

e.g. “conjectured and proved completeness” ⊢S\NP!

• Composition of regular and context-free languages --
mirrors situation in syntactic MT (Auli & Lopez, ACL 2011)!

• Transparent interface to semantics (Bos et al. 2004)  
e.g. proved ⊢ (S\NP)/NP : λx.λy.proved’ xy  

Marcel proved completeness

CCG Parsing is hard!

Over 22 tags per word! (Clark & Curran 2004)

NP NP(S\NP)/NP
>

S\NP
<

S

Marcel proved completeness

Supertagging

Marcel proved completeness

Supertagging

NP NP(S\NP)/NP

Marcel proved completeness

Supertagging

NP NP(S\NP)/NP
>

S\NP
<

S

Supertagging

time flies like an arrow
NP NPS\NP NP/NP(S\NP)/NP

Supertagging

time flies like an arrow
NP NPS\NP NP/NP

✗
(S\NP)/NP

The Problem
• Supertagger has no sense of overall grammaticality.!

• But parser restricted by its decisions.!

• Supertagger probabilities not used in parser.

The Problem
• Supertagger has no sense of overall grammaticality.!

• But parser restricted by its decisions.!

• Supertagger probabilities not used in parser.

supertag sequences

The Problem
• Supertagger has no sense of overall grammaticality.!

• But parser restricted by its decisions.!

• Supertagger probabilities not used in parser.

supertag sequences

supertagger

parser

The Problem
• Supertagger has no sense of overall grammaticality.!

• But parser restricted by its decisions.!

• Supertagger probabilities not used in parser.

supertag sequences

supertagger

parser

The Problem
• Supertagger has no sense of overall grammaticality.!

• But parser restricted by its decisions.!

• Supertagger probabilities not used in parser.

supertag sequences

supertagger

parser

The Problem
• Supertagger has no sense of overall grammaticality.!

• But parser restricted by its decisions.!

• Supertagger probabilities not used in parser.

supertag sequences

parser
supertagger

This talk

• Analysis of state-of-the-art approach  
Trade-off between efficiency and accuracy (ACL 2011a)  

• Integrated supertagging and parsing  
with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)  

• Training the integrated model  
with Softmax-Margin towards task-specific metrics (EMNLP 2011)  

Methods achieve most accurate CCG parsing results.

This talk

• Analysis of state-of-the-art approach  
Trade-off between efficiency and accuracy (ACL 2011a)  

• Integrated supertagging and parsing
with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)

• Training the integrated model
with Softmax-Margin towards task-specific metrics (EMNLP 2011)

Methods achieve

Adaptive Supertagging

time flies like an arrow
NP NPS\NP (S\NP)/NP NP/NP

Adaptive Supertagging

time flies like an arrow
NP NPS\NP (S\NP)/NP NP/NP

((S\NP)\(S\NP))/NP
....

....

NPNP/NP

... ...

... ...

Clark & Curran (2004)

Adaptive Supertagging

• Algorithm:!

• Run supertagger.!

• Return tags with posterior higher than some alpha.!

• Parse by combining tags (CKY).!

• If parsing succeeds, stop.!

• If parsing fails, lower alpha and repeat.

Clark & Curran (2004)

Adaptive Supertagging

• Algorithm:!

• Run supertagger.!

• Return tags with posterior higher than some alpha.!

• Parse by combining tags (CKY).!

• If parsing succeeds, stop.!

• If parsing fails, lower alpha and repeat.

• Q: are parses returned in early rounds suboptimal?

Clark & Curran (2004)

Adaptive Supertagging

Answer...
 L

ab
el

le
d

F-
sc

or
e

92

95

97

100

Tight beam Loose beam

Oracle parsing  
(Huang 2008)

Standard parsing  
(Clark and Curran 2007)

Answer...
 L

ab
el

le
d

F-
sc

or
e

92

95

97

100

Tight beam Loose beam

Oracle parsing  
(Huang 2008)

Standard parsing  
(Clark and Curran 2007)

Answer...
 L

ab
el

le
d

F-
sc

or
e

92

95

97

100

Tight beam Loose beam

Oracle parsing  
(Huang 2008)

Standard parsing  
(Clark and Curran 2007)

Answer...
 L

ab
el

le
d

F-
sc

or
e

92

95

97

100

Tight beam Loose beam

Oracle parsing  
(Huang 2008)

 L
ab

el
le

d
F-

sc
or

e

85

87

88

90

Standard parsing  
(Clark and Curran 2007)

88.2$

88.4$

88.6$

88.8$

89.0$

89.2$

89.4$

89.6$

89.8$

85600$

85800$

86000$

86200$

86400$

86600$

86800$

87000$

87200$

87400$

0.0
75
$

0.0
3$

0.0
1$

0.0
05
$

0.0
01
$

0.0
00
5$

0.0
00
1$

0.0
00
05
$

0.0
00
01
$

La
be

lle
ld
'F
)s
co
re
'

M
od

el
'sc

or
e'

Supertagger'beam'

Model$score$ F6measure$

Parsing

Note: only sentences parsable at all beam settings.

least
aggressive

most
aggressive

Parsing

Note: only sentences parsable at all beam settings.

88.2$

88.4$

88.6$

88.8$

89.0$

89.2$

89.4$

89.6$

89.8$

85600$

85800$

86000$

86200$

86400$

86600$

86800$

87000$

87200$

87400$

0.0
75
$

0.0
3$

0.0
1$

0.0
05
$

0.0
01
$

0.0
00
5$

0.0
00
1$

0.0
00
05
$

0.0
00
01
$

La
be

lle
ld
'F
)s
co
re
'

M
od

el
'sc

or
e'

Supertagger'beam'

Model$score$ F6measure$

least
aggressive

most
aggressive

Oracle Parsing

Note: only sentences parsable at all beam settings.

93.5%

94.0%

94.5%

95.0%

95.5%

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

82500%

83000%

83500%

84000%

84500%

85000%

0.0
75
%

0.0
3%

0.0
1%

0.0
05
%

0.0
01
%

0.0
00
5%

0.0
00
1%

0.0
00
05
%

0.0
00
01
%

La
be

lle
ld
'F
)s
co
re
'

M
od

el
'sc

or
e'

Supertagger'beam'

Model%score% F6measure%

least
aggressive

most
aggressive

What’s happening here?

What’s happening here?

• Supertagger keeps parser from making serious errors.

What’s happening here?

• Supertagger keeps parser from making serious errors.

• But it also occasionally prunes away useful parses.

What’s happening here?

• Supertagger keeps parser from making serious errors.

• But it also occasionally prunes away useful parses.

• Why not combine supertagger and parser into one?

Overview

• Analysis of state-of-the-art approach  
Trade-off between efficiency and accuracy (ACL 2011a)  

• Integrated supertagging and parsing  
with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)  

• Training the integrated model  
with Softmax-Margin towards task-specific metrics (EMNLP 2011)  

Overview

• Analysis of state-of-the-art approach
Trade-off between efficiency and accuracy (ACL 2011a)

• Integrated supertagging and parsing  
with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)  

• Training the integrated model
with Softmax-Margin towards task-specific metrics (EMNLP 2011)

Integrated Model
• Supertagger & parser are log-linear models.!

• Idea: combine their features into one model.!

• Problem: Exact computation of marginal or maximum
quantities becomes very expensive because parsing and
tagging submodels must agree on the tag sequence.

Integrated Model
• Supertagger & parser are log-linear models.!

• Idea: combine their features into one model.!

• Problem: Exact computation of marginal or maximum
quantities becomes very expensive because parsing and
tagging submodels must agree on the tag sequence.

B C → A O(Gn3)original parsing problem:

Integrated Model
• Supertagger & parser are log-linear models.!

• Idea: combine their features into one model.!

• Problem: Exact computation of marginal or maximum
quantities becomes very expensive because parsing and
tagging submodels must agree on the tag sequence.

B C → A O(Gn3)original parsing problem:

qBs sCr → qAr O(G3n3)new parsing problem:

Integrated Model
• Supertagger & parser are log-linear models.!

• Idea: combine their features into one model.!

• Problem: Exact computation of marginal or maximum
quantities becomes very expensive because parsing and
tagging submodels must agree on the tag sequence.

Intersection of a regular and context-free language!
(Bar-Hillel et al. 1964)

B C → A O(Gn3)original parsing problem:

qBs sCr → qAr O(G3n3)new parsing problem:

Approximate Algorithms

• Loopy belief propagation: approximate calculation of
marginals. (Pearl 1988; Smith & Eisner 2008)!

• Dual decomposition: exact (sometimes) calculation of
maximum. (Dantzig & Wolfe 1960; Komodakis et al. 2007; Koo et al. 2010)

Belief Propagation

Belief Propagation

Forward-backward is belief propagation (Smyth et al. 1997)

Belief Propagation

Marcel proved completeness

start stop

Forward-backward is belief propagation (Smyth et al. 1997)

Belief Propagation

Marcel proved completeness

start stop

e1,j e2,j e3,j

ei,jemission message:
fi,j =

X

j0

fi�1,j0ei�1,j0tj0,jforward message:

f1,j f2,j f3,j

backward message: bi,j =
X

j0

bi+1,j0ei+1,j0tj,j0

b1,j b2,j b3,j

pi,j =
1
Z

fi,jei,jbi,jbelief (probability) that tag j is at position i:

Forward-backward is belief propagation (Smyth et al. 1997)

Belief Propagation

Marcel proved completeness

Notational convenience: one factor describes whole!
distribution over supertag sequence...

span variables

Belief Propagation

Marcel proved completeness

We can also do the same for the distribution over parse trees!
(Case-factor diagrams: McAllester et al. 2008)

0S3  
0NP3

0NP2 1S\NP3

0NP1 1S\NP/NP2 2NP3

span variables

Belief Propagation

Marcel proved completeness

We can also do the same for the distribution over parse trees!
(Case-factor diagrams: McAllester et al. 2008)

Inside-outside is belief propagation (Sato 2007)

0S3  
0NP3

0NP2 1S\NP3

0NP1 1S\NP/NP2 2NP3

Belief Propagation

Marcel proved completeness

parsing factor

supertagging factor

Belief Propagation

Marcel proved completeness

parsing factor

supertagging factor

Graph is not a tree!

Loopy Belief Propagation

Marcel proved completeness

Graph is not a tree!

parsing factor

supertagging factor

Loopy Belief Propagation

Marcel proved completeness

Graph is not a tree!

forward-backward

parsing factor

supertagging factor

Loopy Belief Propagation

Marcel proved completeness

Graph is not a tree!

forward-backward

inside-outside

parsing factor

supertagging factor

Loopy Belief Propagation

Marcel proved completeness

Graph is not a tree!

forward-backward

inside-outside

parsing factor

supertagging factor

Loopy Belief Propagation

Marcel proved completeness

Graph is not a tree!

pi,j =
1
Z

fi,jei,jbi,joi,j

forward-backward

inside-outside

parsing factor

supertagging factor

Loopy Belief Propagation

Marcel proved completeness

Graph is not a tree!

pi,j =
1
Z

fi,jei,jbi,joi,j

forward-backward

inside-outside

parsing factor

supertagging factor

!

• Computes approximate marginals, no guarantees.!

• Complexity is additive:!

• Used to compute minimum-risk parse (Goodman 1996).

Loopy Belief Propagation

O(Gn3 +Gn)

Dual Decomposition

Marcel proved completeness

parsing factor

supertagging factor

Dual Decomposition

Marcel proved completeness

parsing factor

supertagging factor

f(y)

g(z)

Dual Decomposition

Marcel proved completeness

parsing factor

supertagging factor

f(y)

g(z)

arg max

y,z
f(y) + g(z) y(i, t) = z(i, t)s.t. for all i, t

Dual Decomposition
arg max

y,z
f(y) + g(z) y(i, t) = z(i, t)s.t. for all i, t

Dual Decomposition
arg max

y,z
f(y) + g(z) y(i, t) = z(i, t)s.t. for all i, t

L(u) = max

y
f(y) +

X

i,t

u(i, t) · y(i, t)

+ max

z
g(z)�

X

i,t

u(i, t) · z(i, t)

Dual Decomposition
arg max

y,z
f(y) + g(z) y(i, t) = z(i, t)s.t. for all i, t

relaxed!
original!
problem

L(u) = max

y
f(y) +

X

i,t

u(i, t) · y(i, t)

+ max

z
g(z)�

X

i,t

u(i, t) · z(i, t)

Dual Decomposition
arg max

y,z
f(y) + g(z) y(i, t) = z(i, t)s.t. for all i, t

modified!
subproblem

L(u) = max

y
f(y) +

X

i,t

u(i, t) · y(i, t)

+ max

z
g(z)�

X

i,t

u(i, t) · z(i, t)

Dual Decomposition
arg max

y,z
f(y) + g(z) y(i, t) = z(i, t)s.t. for all i, t

L(u) = max

y
f(y) +

X

i,t

u(i, t) · y(i, t)

+ max

z
g(z)�

X

i,t

u(i, t) · z(i, t)

u(i, t)Dual objective: find assignment of that minimises L(u)

Dual Decomposition

u(i, t) = u(i, t) + ↵ · [y(i, t)� z(i, t)] (Rush et al. 2010)

arg max

y,z
f(y) + g(z) y(i, t) = z(i, t)s.t. for all i, t

L(u) = max

y
f(y) +

X

i,t

u(i, t) · y(i, t)

+ max

z
g(z)�

X

i,t

u(i, t) · z(i, t)

u(i, t)Dual objective: find assignment of that minimises L(u)

Solution provably solves original problem.

Dual Decomposition

Marcel proved completeness

parsing factor

supertagging factor

Dual Decomposition

Marcel proved completeness

parsing factor

supertagging factor Viterbi tags

Viterbi parse

Dual Decomposition

Marcel proved completeness

parsing factor

supertagging factor Viterbi tags

Viterbi parse

“Message passing”  
(Komodakis et al. 2007)

• Computes exact maximum, if it converges.!

• Otherwise: return best parse seen (approximation).!

• Complexity is additive:!

• Use to compute Viterbi solutions.

Dual Decomposition

O(Gn3 +Gn)

Experiments

• Standard parsing task:!

• C&C Parser and supertagger (Clark & Curran 2007).!

• CCGBank standard train/dev/test splits.!

• Piecewise optimisation (Sutton and McCallum 2005)!

• Approximate algorithms used to decode test set.

Experiments: Accuracy over time

Experiments: Accuracy over time

tight search (AST)

loose search (Rev)

Experiments: Convergence

Experiments: Convergence

Dual decomposition exact in 99.7% of cases  
What about belief propagation?

Experiments: BP Exactness

Experiments: BP Exactness

90#

92#

94#

96#

98#

100#

1# 10# 100# 1000#

M
at
ch
&(%

)&

Itera-ons&

match#DD#k=1000#

match#BP#k=1000#

Experiments: BP Exactness

90#

92#

94#

96#

98#

100#

1# 10# 100# 1000#

M
at
ch
&(%

)&

Itera-ons&

match#DD#k=1000#

match#BP#k=1000#

Instantly, 91% match final DD solutions!

 Takes DD 15 iterations to reach same level.

Experiments: Accuracy

87

87.5

88

88.5

89

Tight beam Loose beam

Baseline Belief Propagation Dual Decomposition

Test set results

La
be

lle
d

F-
m

ea
su

re

Experiments: Accuracy

87

87.5

88

88.5

89

Tight beam Loose beam

Baseline Belief Propagation Dual Decomposition

88.1
88.3

87.7

Test set results

La
be

lle
d

F-
m

ea
su

re

Experiments: Accuracy

87

87.5

88

88.5

89

Tight beam Loose beam

Baseline Belief Propagation Dual Decomposition

88.8

88.1

88.9

88.3

87.787.7

Note: BP accuracy after 1 iteration; DD accuracy after 25 iterations

Test set results

La
be

lle
d

F-
m

ea
su

re

+1.1

Experiments: Accuracy

87

87.5

88

88.5

89

Tight beam Loose beam

Baseline Belief Propagation Dual Decomposition

88.8

88.1

88.9

88.3

87.787.7

Note: BP accuracy after 1 iteration; DD accuracy after 25 iterations

Test set results

La
be

lle
d

F-
m

ea
su

re

+1.1

Best published result

Oracle Results Again

89.4%

89.5%

89.6%

89.7%

89.8%

89.9%

90.0%

60000%

80000%

100000%

120000%

140000%

160000%

180000%

200000%

0.0
75
%

0.0
3%

0.0
1%

0.0
05
%

0.0
01
%

0.0
00
5%

0.0
00
1%

0.0
00
05
%

0.0
00
01
%

La
be

lle
ld
'F
)s
co
re
'

M
od

el
'sc

or
e'

Supertagger'beam'

Model%score% F6measure%

Belief Propagation

89.2%

89.3%

89.4%

89.5%

89.6%

89.7%

89.8%

89.9%

85200%

85400%

85600%

85800%

86000%

86200%

86400%

0.0
75
%

0.0
3%

0.0
1%

0.0
05
%

0.0
01
%

0.0
00
5%

0.0
00
1%

0.0
00
05
%

0.0
00
01
%

La
be

lle
ld
'F
)s
co
re
'

M
od

el
'sc

or
e'

Supertagger'beam'

Model%score% F6measure%

Dual Decomposition

Summary so far

• Supertagging efficiency comes at the cost of accuracy.!

• Interaction between parser and supertagger can be
exploited in an integrated model.!

• Practical inference for complex integrated model.!

• First empirical comparison between dual
decomposition and belief propagation on NLP task.!

• Loopy belief propagation is fast, accurate and exact.

Overview

• Analysis of state-of-the-art approach  
Trade-off between efficiency and accuracy (ACL 2011a)  

• Integrated supertagging and parsing  
with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)  

• Training the integrated model  
with Softmax-Margin towards task-specific metrics (EMNLP 2011)  

Overview

• Analysis of state-of-the-art approach
Trade-off between efficiency and accuracy (ACL 2011a)

• Integrated supertagging and parsing
with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)

• Training the integrated model  
with Softmax-Margin towards task-specific metrics (EMNLP 2011)  

Training the Integrated Model

• So far optimised Conditional Log-Likelihood (CLL).!

• Optimise towards task-specific metric e.g. F1 such as in
SMT (Och, 2003).!

• Past work used approximations to Precision  
(Taskar et al. 2004).!

• Contribution: Do it exactly and verify approximations.

Marcel proved completeness

Parsing Metrics

NP NP(S\NP)/NP

S\NP

S

CCG: Labelled, directed dependency recovery  
(Clark & Hockenmaier, 2002)

<proved, (S\NP)/NP, completeness>
<proved, (S\NP)/NP, Marcel>

Evaluate this}

Marcel proved completeness

Parsing Metrics

NP NP(S\NP)/NP

S\NP

S

CCG: Labelled, directed dependency recovery  
(Clark & Hockenmaier, 2002)

<proved, (S\NP)/NP, completeness>
<proved, (S\NP)/NP, Marcel>

Not this!

Marcel proved completeness

Parsing Metrics

NP NP(S\NP)/NP

S\NP

S

CCG: Labelled, directed dependency recovery  
(Clark & Hockenmaier, 2002)

<proved, (S\NP)/NP, completeness>
<proved, (S\NP)/NP, Marcel>

y = dependencies in ground truth
y’ = dependencies in proposed output

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Parsing Metrics

y = dependencies in ground truth
y’ = dependencies in proposed output

Precision P (y, y0) =
|y \ y0|
|y0| =

n

d

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Recall R(y, y0) =
|y \ y0|
|y| =

n

|y|

F-measure F1(y, y
0) =

2PR

P +R
=

2|y \ y0|
|y|+ |y0| =

2n

d+ |y|

Parsing Metrics

Softmax-Margin Training

• Discriminative.!

• Probabilistic.!

• Convex objective.!

• Minimises bound on expected risk for a given loss
function.!

• Requires little change to existing CLL implementation.

(Sha & Saul, 2006; Povey & Woodland,2008; Gimpel & Smith, 2010)

Softmax-Margin Training

CLL: min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<�>

NP
<

(S\NP)

Dependencies:
and - pears
and - apples
likes - pears, likes - apples

Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<

NP
>

(S\NP)

Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)

4 Experiments

Parsing Strategy. The most successful approach to
CCG parsing is based on a pipeline strategy: First,

we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).

Softmax-Margin Training

CLL: min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<�>

NP
<

(S\NP)

Dependencies:
and - pears
and - apples
likes - pears, likes - apples

Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<

NP
>

(S\NP)

Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)

4 Experiments

Parsing Strategy. The most successful approach to
CCG parsing is based on a pipeline strategy: First,

we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).

weights true outputfeatures input proposed outputpossible  
outputs

training  
examples

Softmax-Margin Training

CLL: min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<�>

NP
<

(S\NP)

Dependencies:
and - pears
and - apples
likes - pears, likes - apples

Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<

NP
>

(S\NP)

Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)

4 Experiments

Parsing Strategy. The most successful approach to
CCG parsing is based on a pipeline strategy: First,

we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).

SMM:

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<�>

NP
<

(S\NP)

Dependencies:
and - pears
and - apples
likes - pears, likes - apples

Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<

NP
>

(S\NP)

Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)

4 Experiments

Parsing Strategy. The most successful approach to
CCG parsing is based on a pipeline strategy: First,

we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).

weights true outputfeatures input proposed outputpossible  
outputs

training  
examples

Softmax-Margin Training

CLL: min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<�>

NP
<

(S\NP)

Dependencies:
and - pears
and - apples
likes - pears, likes - apples

Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<

NP
>

(S\NP)

Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)

4 Experiments

Parsing Strategy. The most successful approach to
CCG parsing is based on a pipeline strategy: First,

we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).

SMM:

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<�>

NP
<

(S\NP)

Dependencies:
and - pears
and - apples
likes - pears, likes - apples

Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<

NP
>

(S\NP)

Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)

4 Experiments

Parsing Strategy. The most successful approach to
CCG parsing is based on a pipeline strategy: First,

we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).

weights true outputfeatures input proposed outputpossible  
outputs

training  
examples

Softmax-Margin Training

CLL: min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<�>

NP
<

(S\NP)

Dependencies:
and - pears
and - apples
likes - pears, likes - apples

Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<

NP
>

(S\NP)

Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)

4 Experiments

Parsing Strategy. The most successful approach to
CCG parsing is based on a pipeline strategy: First,

we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).

SMM:

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<�>

NP
<

(S\NP)

Dependencies:
and - pears
and - apples
likes - pears, likes - apples

Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran

likes apples and pears

(S\NP)/NP NP CONJ NP
<�>

NP\NP
<

NP
>

(S\NP)

Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)

4 Experiments

Parsing Strategy. The most successful approach to
CCG parsing is based on a pipeline strategy: First,

we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).

• Penalise high-loss outputs.!

• Re-weight outcomes by loss function.!

• Loss function an unweighted feature -- if decomposable.

weights true outputfeatures input proposed outputpossible  
outputs

training  
examples

Decomposability

• CKY assumes weights factor over substructures (node
+ children = substructure).

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

• A decomposable loss function must factor identically.

Decomposability

• CKY assumes weights factor over substructures (node
+ children = substructure).

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

• A decomposable loss function must factor identically.

Decomposability

• CKY assumes weights factor over substructures (node
+ children = substructure).

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

• A decomposable loss function must factor identically.

Decomposability

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d
n = n1 + n2

Decomposability

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

: n1 : n2

: n

Correct dependency counts

n = n1 + n2

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,: f1 : f2

: f

F-measure

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Decomposability

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,: f1 : f2

: f

F-measure

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Decomposability

f = f1 f2⌦

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,: f1 : f2

: f

F-measure

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Decomposability

f = f1 f2⌦

Approximations!

Approximate Loss Functions

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

Approximate Loss Functions

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,:0,0 :1,1

:1,1

:0,0:0,0

n+ correct dependencies
d+ all dependencies  

c+ gold dependencies

for each substructure:

Approximate Loss Functions

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,:0,0 :1,1

:1,1

:0,0:0,0

Ai,i+1,n+(ai:A),d+(ai:A) ⇤= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇤= Bi,k,n,d ⌅ Ck,j,n�,d� ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N,n,d ⌅
�
1� 2n

d+ |y|

⇥

Figure 3: State-split inside algorithm for computing softmax-margin with F-measure.

Note that while this algorithm computes exact
sentence-level expectations, it is approximate at the
corpus level, since F-measure does not decompose
over sentences. We give the extension to exact
corpus-level expectations in Appendix A.

3.2 Approximate Loss Functions
We will also consider approximate but more effi-
cient alternatives to our exact algorithms. The idea
is to use cost functions which only utilise statistics
available within the current local structure, similar to
those used by Taskar et al. (2004) for tracking con-
stituent errors in a context-free parser. We design
three simple losses to approximate precision, recall
and F-measure on CCG dependency structures.

Let T (y) be the set of parsing actions required
to build parse y. Our decomposable approximation
to precision simply counts the number of incorrect
dependencies using the local dependency counts,
n+(·) and d+(·).

DecP (y) =
⇤

t⇥T (y)

d+(t)� n+(t) (8)

To compute our approximation to recall we re-
quire the number of gold dependencies, c+(·), which
should have been introduced by a particular parsing
action. A gold dependency is due to be recovered
by a parsing action if its head lies within one child
span and its dependent within the other. This yields a
decomposed approximation to recall that counts the
number of missed dependencies.

DecR(y) =
⇤

t⇥T (y)

c+(t)� n+(t) (9)

Unfortunately, the flexible handling of dependencies
in CCG complicates our formulation of c+, render-
ing it slightly more approximate: The unification
mechanism of CCG sometimes causes dependencies

to be realised later in the derivation, at a point when
both the head and the dependent are in the same
span, violating the assumption used to compute c+
(see again Figure 2). Exceptions like this can cause
mismatches between n+ and c+. We set c+ = n+

whenever c+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposable approximation
to F-measure.

DecF1(y) = DecP (y) +DecR(y) (10)

4 Experiments

Parsing Strategy. CCG parsers use a pipeline strat-
egy: we first multitag each word of the sentence with
a small subset of its possible lexical categories us-
ing a supertagger, a sequence model over these cat-
egories (Bangalore and Joshi, 1999; Clark, 2002).
Then we parse the sentence under the requirement
that the lexical categories are fixed to those preferred
by the supertagger. In our experiments we used two
variants on this strategy.

First is the adaptive supertagging (AST) approach
of Clark and Curran (2004). It is based on a step
function over supertagger beam widths, relaxing the
pruning threshold for lexical categories only if the
parser fails to find an analysis. The process either
succeeds and returns a parse after some iteration or
gives up after a predefined number of iterations. As
Clark and Curran (2004) show, most sentences can
be parsed with very tight beams.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parsable when they otherwise would not be due to an
impractically large search space. Reverse AST starts
with a wide beam, narrowing it at each iteration only
if a maximum chart size is exceeded. Table 1 shows
beam settings for both strategies.

Ai,i+1,n+(ai:A),d+(ai:A) ⇤= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇤= Bi,k,n,d ⌅ Ck,j,n�,d� ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N,n,d ⌅
�
1� 2n

d+ |y|

⇥

Figure 3: State-split inside algorithm for computing softmax-margin with F-measure.

Note that while this algorithm computes exact
sentence-level expectations, it is approximate at the
corpus level, since F-measure does not decompose
over sentences. We give the extension to exact
corpus-level expectations in Appendix A.

3.2 Approximate Loss Functions
We will also consider approximate but more effi-
cient alternatives to our exact algorithms. The idea
is to use cost functions which only utilise statistics
available within the current local structure, similar to
those used by Taskar et al. (2004) for tracking con-
stituent errors in a context-free parser. We design
three simple losses to approximate precision, recall
and F-measure on CCG dependency structures.

Let T (y) be the set of parsing actions required
to build parse y. Our decomposable approximation
to precision simply counts the number of incorrect
dependencies using the local dependency counts,
n+(·) and d+(·).

DecP (y) =
⇤

t⇥T (y)

d+(t)� n+(t) (8)

To compute our approximation to recall we re-
quire the number of gold dependencies, c+(·), which
should have been introduced by a particular parsing
action. A gold dependency is due to be recovered
by a parsing action if its head lies within one child
span and its dependent within the other. This yields a
decomposed approximation to recall that counts the
number of missed dependencies.

DecR(y) =
⇤

t⇥T (y)

c+(t)� n+(t) (9)

Unfortunately, the flexible handling of dependencies
in CCG complicates our formulation of c+, render-
ing it slightly more approximate: The unification
mechanism of CCG sometimes causes dependencies

to be realised later in the derivation, at a point when
both the head and the dependent are in the same
span, violating the assumption used to compute c+
(see again Figure 2). Exceptions like this can cause
mismatches between n+ and c+. We set c+ = n+

whenever c+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposable approximation
to F-measure.

DecF1(y) = DecP (y) +DecR(y) (10)

4 Experiments

Parsing Strategy. CCG parsers use a pipeline strat-
egy: we first multitag each word of the sentence with
a small subset of its possible lexical categories us-
ing a supertagger, a sequence model over these cat-
egories (Bangalore and Joshi, 1999; Clark, 2002).
Then we parse the sentence under the requirement
that the lexical categories are fixed to those preferred
by the supertagger. In our experiments we used two
variants on this strategy.

First is the adaptive supertagging (AST) approach
of Clark and Curran (2004). It is based on a step
function over supertagger beam widths, relaxing the
pruning threshold for lexical categories only if the
parser fails to find an analysis. The process either
succeeds and returns a parse after some iteration or
gives up after a predefined number of iterations. As
Clark and Curran (2004) show, most sentences can
be parsed with very tight beams.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parsable when they otherwise would not be due to an
impractically large search space. Reverse AST starts
with a wide beam, narrowing it at each iteration only
if a maximum chart size is exceeded. Table 1 shows
beam settings for both strategies.

Ai,i+1,n+(ai:A),d+(ai:A) ⇤= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇤= Bi,k,n,d ⌅ Ck,j,n�,d� ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N,n,d ⌅
�
1� 2n

d+ |y|

⇥

Figure 3: State-split inside algorithm for computing softmax-margin with F-measure.

Note that while this algorithm computes exact
sentence-level expectations, it is approximate at the
corpus level, since F-measure does not decompose
over sentences. We give the extension to exact
corpus-level expectations in Appendix A.

3.2 Approximate Loss Functions
We will also consider approximate but more effi-
cient alternatives to our exact algorithms. The idea
is to use cost functions which only utilise statistics
available within the current local structure, similar to
those used by Taskar et al. (2004) for tracking con-
stituent errors in a context-free parser. We design
three simple losses to approximate precision, recall
and F-measure on CCG dependency structures.

Let T (y) be the set of parsing actions required
to build parse y. Our decomposable approximation
to precision simply counts the number of incorrect
dependencies using the local dependency counts,
n+(·) and d+(·).

DecP (y) =
⇤

t⇥T (y)

d+(t)� n+(t) (8)

To compute our approximation to recall we re-
quire the number of gold dependencies, c+(·), which
should have been introduced by a particular parsing
action. A gold dependency is due to be recovered
by a parsing action if its head lies within one child
span and its dependent within the other. This yields a
decomposed approximation to recall that counts the
number of missed dependencies.

DecR(y) =
⇤

t⇥T (y)

c+(t)� n+(t) (9)

Unfortunately, the flexible handling of dependencies
in CCG complicates our formulation of c+, render-
ing it slightly more approximate: The unification
mechanism of CCG sometimes causes dependencies

to be realised later in the derivation, at a point when
both the head and the dependent are in the same
span, violating the assumption used to compute c+
(see again Figure 2). Exceptions like this can cause
mismatches between n+ and c+. We set c+ = n+

whenever c+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposable approximation
to F-measure.

DecF1(y) = DecP (y) +DecR(y) (10)

4 Experiments

Parsing Strategy. CCG parsers use a pipeline strat-
egy: we first multitag each word of the sentence with
a small subset of its possible lexical categories us-
ing a supertagger, a sequence model over these cat-
egories (Bangalore and Joshi, 1999; Clark, 2002).
Then we parse the sentence under the requirement
that the lexical categories are fixed to those preferred
by the supertagger. In our experiments we used two
variants on this strategy.

First is the adaptive supertagging (AST) approach
of Clark and Curran (2004). It is based on a step
function over supertagger beam widths, relaxing the
pruning threshold for lexical categories only if the
parser fails to find an analysis. The process either
succeeds and returns a parse after some iteration or
gives up after a predefined number of iterations. As
Clark and Curran (2004) show, most sentences can
be parsed with very tight beams.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parsable when they otherwise would not be due to an
impractically large search space. Reverse AST starts
with a wide beam, narrowing it at each iteration only
if a maximum chart size is exceeded. Table 1 shows
beam settings for both strategies.

n+ correct dependencies
d+ all dependencies  

c+ gold dependencies

for each substructure:

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

items Ai,j target analysis
correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

items Ai,j target analysis
correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

items Ai,j

NP3,5,1,1

target analysis

DecF1(1,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

items Ai,j

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

target analysis

DecF1(1,1)

DecF1(1,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

items Ai,j

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

target analysis

DecF1(1,1)

DecF1(1,1)

DecF1(1,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

items Ai,j

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5

target analysis

DecF1(1,1)

DecF1(1,1)

DecF1(1,1)

DecF1(1,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

items Ai,j

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5

target analysisGOAL

DecF1(1,1)

DecF1(1,1)

DecF1(1,1)

DecF1(1,1)

correct dependencies
all dependencies

time1 flies2 like3 an4 arrow5

another analysisitems Ai,j

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

another analysisitems Ai,j

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP3,5,1,1

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

another analysisitems Ai,j

DecF1(1,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP3,5,1,1

S\NP2,5,1,2

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

another analysisitems Ai,j

DecF1(1,1)

DecF1(0,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP3,5,1,1

NP0,2,0,1

S\NP2,5,1,2

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

another analysisitems Ai,j

DecF1(1,1)

DecF1(0,1)

DecF1(0,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP3,5,1,1

NP0,2,0,1

S\NP2,5,1,2

S0,5

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

another analysisitems Ai,j

DecF1(1,1)

DecF1(0,1)

DecF1(0,1)

DecF1(0,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP3,5,1,1

NP0,2,0,1

S\NP2,5,1,2

S0,5

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

another analysisitems Ai,j
GOAL

DecF1(1,1)

DecF1(0,1)

DecF1(0,1)

DecF1(0,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5

NP0,2,0,1

S\NP2,5,1,2

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

both analysisitems Ai,j
GOAL

DecF1(1,1)

DecF1(0,1)

DecF1(0,1)

DecF1(1,1)
DecF1(0,1)

DecF1(1,1)

DecF1(1,1)

correct dependencies
all dependencies

Approximate Losses with CKY

time1 flies2 like3 an4 arrow5

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5

NP0,2,0,1

S\NP2,5,1,2

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

both analysisitems Ai,j
GOAL

DecF1(1,1)

DecF1(0,1)

DecF1(0,1)

DecF1(1,1)
DecF1(0,1)

DecF1(1,1)

DecF1(1,1)

correct dependencies
all dependencies

Approximate Losses with CKY

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

F1(y, y
0) =

2n

d+ |y|

F-measure

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Decomposability Revisited

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,: n1, d1 : n2, d2

F1(y, y
0) =

2n

d+ |y|

F-measure

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Decomposability Revisited

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,: n1, d1 : n2, d2

F1(y, y
0) =

2n

d+ |y|

F-measure

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Decomposability Revisited

f =
2n1

d1 + |y| ⌦
2n2

d2 + |y|

=
2(n1 + n2)

d1 + d2 + 2|y|

Exact Loss Functions

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

Exact Loss Functions

• Treat sentence-level F1 as non-local feature dependent on n, d.

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,

Exact Loss Functions

• Treat sentence-level F1 as non-local feature dependent on n, d.

• Result: new dynamic program over items Ai,j,n,d

Marcel proved completeness

NP0,1,

NP2,3(S\NP)/NP1,2,

S0,3,

S\NP1,3,,0,0

,0,0,0,0

,1,1

,1,1

Exact Losses with State-Split CKY
items Ai,j,n,d

time1 flies2 like3 an4 arrow5

correct dependencies
all dependencies

Exact Losses with State-Split CKY
items Ai,j,n,d

time1 flies2 like3 an4 arrow5

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5,4,4

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

correct dependencies
all dependencies

Exact Losses with State-Split CKY
items Ai,j,n,d

time1 flies2 like3 an4 arrow5

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5,4,4

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

correct dependencies
all dependencies

GOAL

Exact Losses with State-Split CKY
items Ai,j,n,d

time1 flies2 like3 an4 arrow5

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5,4,4

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

correct dependencies
all dependencies

GOALF1(4,4)

time1 flies2 like3 an4 arrow5

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5,4,4

NP0,2,0,1

S\NP3,5,1,2

S0,5,1,4

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

correct dependencies
all dependencies

items Ai,j,n,d
GOAL F1(1,4)F1(4,4)

Exact Losses with State-Split CKY

time1 flies2 like3 an4 arrow5

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5,4,4

NP0,2,0,1

S\NP3,5,1,2

S0,5,1,4

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

correct dependencies
all dependencies

items Ai,j,n,d
GOAL F1(1,4)F1(4,4)

Exact Losses with State-Split CKY

time1 flies2 like3 an4 arrow5

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5,4,4

NP0,2,0,1

S\NP3,5,1,2

S0,5,1,4

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

Speed O(L7)  
Space O(L4)

items Ai,j,n,d
GOAL F1(1,4)F1(4,4)

Exact Losses with State-Split CKY

time1 flies2 like3 an4 arrow5

NP3,5,1,1

(S\NP)\(S\NP)2,5,2,2

S\NP1,5,3,3

S0,5,4,4

NP0,2,0,1

S\NP3,5,1,2

S0,5,1,4

NP0,1,0,0 S\NP1,2,0,0
((S\NP)\(S\NP))/NP2,3,0,0

NP/NP3,4,0,0 NP4,5,0,0

NP/NP0,1,0,0
(S\NP)/NP2,3,0,0NP0,1,0,0

items Ai,j,n,d
GOAL F1(1,4)F1(4,4)

Exact Losses with State-Split CKY
in practice!

48 x larger DP!
30 x slower

Experiments

• Standard parsing task:!

• C&C Parser and supertagger (Clark & Curran 2007).!

• CCGBank standard train/dev/test splits.!

• Piecewise optimisation (Sutton and McCallum 2005)

Exact versus Approximate

86.9

87.1

87.3

87.6

87.8

88.0

Precision Recall F-measure

Approximate Exact

Exact versus Approximate

86.9

87.1

87.3

87.6

87.8

88.0

Precision Recall F-measure

Approximate Exact

Exact versus Approximate

86.9

87.1

87.3

87.6

87.8

88.0

Precision Recall F-measure

Approximate Exact

Exact versus Approximate

86.9

87.1

87.3

87.6

87.8

88.0

Precision Recall F-measure

Approximate Exact

Exact versus Approximate

Approximate loss functions work, and much faster!

86.9

87.1

87.3

87.6

87.8

88.0

Precision Recall F-measure

Approximate Exact

Softmax-Margin beats CLL
Test set results

87.5

87.9

88.2

88.6

Tight beam Loose beam

C&C ‘07 DecF1

La
be

lle
d

F-
m

ea
su

re

Softmax-Margin beats CLL
Test set results

87.5

87.9

88.2

88.6

Tight beam Loose beam

C&C ‘07 DecF1

88.1

87.7La
be

lle
d

F-
m

ea
su

re

Softmax-Margin beats CLL
Test set results

87.5

87.9

88.2

88.6

Tight beam Loose beam

C&C ‘07 DecF1

88.6

88.1

87.7
87.7

+0.9

La
be

lle
d

F-
m

ea
su

re

Does task-specific optimisation degrade accuracy on
other metrics?

Softmax-Margin beats CLL

Does task-specific optimisation degrade accuracy on
other metrics?

37.0

38.0

39.0

40.0

Tight beam Loose beam

39.1

38.0 38.0

37.7

C&C ‘07 DecF1

La
be

lle
d

Ex
ac

t M
at

ch

Softmax-Margin beats CLL

Integrated Model + SMM

Marcel proved completeness

Integrated Model + SMM

Marcel proved completeness

Integrated Model + SMM

Marcel proved completeness

Hamming!
augmented!
expectations

forward-  
backward

Integrated Model + SMM

Marcel proved completeness

Hamming!
augmented!
expectations

forward-  
backward

Integrated Model + SMM

Marcel proved completeness

parsing factor

supertagging factor

Hamming!
augmented!
expectations

forward-  
backward

Integrated Model + SMM

Marcel proved completeness

parsing factor

supertagging factor

Hamming!
augmented!
expectations

forward-  
backward

F-measure!
augmented!
expectations

inside-outside

Integrated Model + SMM

Marcel proved completeness

parsing factor

supertagging factor

Hamming!
augmented!
expectations

forward-  
backward

F-measure!
augmented!
expectations

inside-outside

Results: Integrated Model
• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

87.0

87.8

88.5

89.3

90.0

C&C ’07 Integrated +DecF1 +Tagger

La
be

lle
d

F-
m

ea
su

re

Results: Integrated Model
• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

87.0

87.8

88.5

89.3

90.0

C&C ’07 Integrated +DecF1 +Tagger

87.7

La
be

lle
d

F-
m

ea
su

re

Results: Integrated Model
• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

87.0

87.8

88.5

89.3

90.0

C&C ’07 Integrated +DecF1 +Tagger

88.9

87.7

La
be

lle
d

F-
m

ea
su

re

Results: Integrated Model
• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

87.0

87.8

88.5

89.3

90.0

C&C ’07 Integrated +DecF1 +Tagger

89.2
88.9

87.7

La
be

lle
d

F-
m

ea
su

re

Results: Integrated Model
• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

87.0

87.8

88.5

89.3

90.0

C&C ’07 Integrated +DecF1 +Tagger

89.389.2
88.9

87.7

La
be

lle
d

F-
m

ea
su

re

+1.5

Results: Automatic POS

85.0

85.8

86.5

87.3

88.0

C&C ’07 Petrov-I5 Integrated +DecF1 +Tagger

La
be

lle
d

F-
m

ea
su

re

Fowler & Penn (2010)

• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

Results: Automatic POS

85.0

85.8

86.5

87.3

88.0

C&C ’07 Petrov-I5 Integrated +DecF1 +Tagger

85.7

La
be

lle
d

F-
m

ea
su

re

Fowler & Penn (2010)

• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

Results: Automatic POS

85.0

85.8

86.5

87.3

88.0

C&C ’07 Petrov-I5 Integrated +DecF1 +Tagger

86.0
85.7

La
be

lle
d

F-
m

ea
su

re

Fowler & Penn (2010)

• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

Results: Automatic POS

85.0

85.8

86.5

87.3

88.0

C&C ’07 Petrov-I5 Integrated +DecF1 +Tagger

86.8

86.0
85.7

La
be

lle
d

F-
m

ea
su

re

Fowler & Penn (2010)

• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

Results: Automatic POS

85.0

85.8

86.5

87.3

88.0

C&C ’07 Petrov-I5 Integrated +DecF1 +Tagger

87.1
86.8

86.0
85.7

La
be

lle
d

F-
m

ea
su

re

Fowler & Penn (2010)

• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

Results: Automatic POS

85.0

85.8

86.5

87.3

88.0

C&C ’07 Petrov-I5 Integrated +DecF1 +Tagger

87.287.1
86.8

86.0
85.7

La
be

lle
d

F-
m

ea
su

re

Fowler & Penn (2010)

+1.5

• F-measure loss for parsing sub-model (+DecF1).!

• Hamming loss for supertagging sub-model (+Tagger).!

• Belief propagation for inference.

Results: Efficiency vs. Accuracy
Se

nt
en

ce
s/

se
co

nd

Accuracy
Better

Faster

0

11

22

33

44

55

66

77

88

99

110

87 88 89 90

Results: Efficiency vs. Accuracy
Se

nt
en

ce
s/

se
co

nd

Accuracy
Better

Faster

0

11

22

33

44

55

66

77

88

99

110

87 88 89 90

Results: Efficiency vs. Accuracy
Se

nt
en

ce
s/

se
co

nd

Accuracy
Better

Faster

C&C

Results: Efficiency vs. Accuracy
Se

nt
en

ce
s/

se
co

nd

Accuracy
Better

Faster

C&C

0

11

22

33

44

55

66

77

88

99

110

87 88 89 90

Results: Efficiency vs. Accuracy
Se

nt
en

ce
s/

se
co

nd

Accuracy
Better

Faster

C&C Integrated  
Model

0

11

22

33

44

55

66

77

88

99

110

87 88 89 90

Results: Efficiency vs. Accuracy
Se

nt
en

ce
s/

se
co

nd

Accuracy
Better

Faster

C&C Integrated  
Model

Softmax-  
Margin  
Training

Summary

• Softmax-Margin training is easy and improves our
model.!

• Approximate loss functions are fast, accurate and easy
to use.!

• Best ever CCG parsing results (87.7 → 89.3).

Future Directions

• What can we do with the presented methods?!

• BP for other complex problems e.g. SMT!

• Semantics for SMT.!

• Simultaneous parsing of multiple sentences.

BP for other NLP pipelines

• Pipelines necessary for practical NLP systems!

• More accurate integrated models often too complex!

• This talk: Approximate inference can make these
models practical!

• Use it for other pipelines e.g. POS, NER tagging &
Parsing!

• Hard: BP for syntactic MT, another weighted
intersection problem between LM & TM

Semantics for SMT
• Compositional & distributional meaning

representation to compute vectors of sentence-
meaning (Greffenstette & Sadrzadeh, 2011; Clark, to appear) !

• Syntax (e.g. CCG) drives compositional process!

• Directions: Model optimisation, evaluation, LM

Translation

Reference

Parsing beyond sentence-level
• Many NLP tasks (e.g. IE) rely on uniform analysis of constituents!

• Skip-Chain CRFs successful to predict consistent NER tags across
sentences (Sutton & McCallum, 2004)!

• Parse multiple sentences at once and enforce uniformity of parses

The securities and exchange commission issued ...

NNP/N

NP

... responded to the statement of the securities and exchange commission

NPconjNP

NP\NP

NP

1.

2.

Related Publications
• A Comparison of Loopy Belief Propagation and Dual

Decomposition for Integrated CCG Supertagging and
Parsing. with Adam Lopez. In Proc. of ACL, June 2011. !

• Efficient CCG Parsing: A* versus Adaptive Supertagging.
with Adam Lopez. In Proc. of ACL, June 2011.!

• Training a Log-Linear Parser with Softmax-Margin. with
Adam Lopez. In Proc. of EMNLP, July 2011.!

• A Systematic Comparison of Translation Model Search
Spaces. with Adam Lopez, Hieu Hoang, Philipp Koehn.
In Proc. of WMT, March 2009.

Thank you

