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Why CCG Parsing?

• MT: Can analyse nearly any span in a sentence  
(Auli ’09; Mehay ‘10; Zhang & Clark 2011; Weese et. al. ’12)  

e.g. “conjectured and proved completeness” ⊢S\NP!

• Composition of regular and context-free languages -- 
mirrors situation in syntactic MT (Auli & Lopez, ACL 2011)!

• Transparent interface to semantics (Bos et al. 2004)  
e.g. proved ⊢ (S\NP)/NP : λx.λy.proved’ xy  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CCG Parsing is hard!

Over 22 tags per word! (Clark & Curran 2004)
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The Problem
• Supertagger has no sense of overall grammaticality.!

• But parser restricted by its decisions.!

• Supertagger probabilities not used in parser.
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The Problem
• Supertagger has no sense of overall grammaticality.!

• But parser restricted by its decisions.!

• Supertagger probabilities not used in parser.

supertag sequences

parser
supertagger



This talk

• Analysis of state-of-the-art approach  
Trade-off between efficiency and accuracy (ACL 2011a)  

• Integrated supertagging and parsing  
with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)  

• Training the integrated model  
with Softmax-Margin towards task-specific metrics (EMNLP 2011)  

Methods achieve most accurate CCG parsing results.
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Trade-off between efficiency and accuracy (ACL 2011a)  

• Integrated supertagging and parsing
with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)

• Training the integrated model 
with Softmax-Margin towards task-specific metrics (EMNLP 2011)

Methods achieve
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Clark & Curran (2004)

Adaptive Supertagging



• Algorithm:!

• Run supertagger.!

• Return tags with posterior higher than some alpha.!

• Parse by combining tags (CKY).!

• If parsing succeeds, stop.!

• If parsing fails, lower alpha and repeat.

Clark & Curran (2004)

Adaptive Supertagging



• Algorithm:!

• Run supertagger.!

• Return tags with posterior higher than some alpha.!

• Parse by combining tags (CKY).!

• If parsing succeeds, stop.!

• If parsing fails, lower alpha and repeat.

• Q: are parses returned in early rounds suboptimal?

Clark & Curran (2004)

Adaptive Supertagging
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Oracle Parsing

Note: only sentences parsable at all beam settings.
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What’s happening here?

• Supertagger keeps parser from making serious errors.

• But it also occasionally prunes away useful parses.

• Why not combine supertagger and parser into one?
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Integrated Model
• Supertagger & parser are log-linear models.!

• Idea: combine their features into one model.!

• Problem: Exact computation of marginal or maximum 
quantities becomes very expensive because parsing and 
tagging submodels must agree on the tag sequence.

Intersection of a regular and context-free language!
(Bar-Hillel et al. 1964)

B C  →   A O(Gn3)original parsing problem:

qBs sCr → qAr O(G3n3)new parsing problem:



Approximate Algorithms

• Loopy belief propagation: approximate calculation of 
marginals. (Pearl 1988; Smith & Eisner 2008)!

• Dual decomposition: exact (sometimes) calculation of 
maximum. (Dantzig & Wolfe 1960; Komodakis et al. 2007; Koo et al. 2010)
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Belief Propagation
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start stop

e1,j e2,j e3,j

ei,jemission message:
fi,j =

X

j0

fi�1,j0ei�1,j0tj0,jforward message:

f1,j f2,j f3,j

backward message: bi,j =
X

j0

bi+1,j0ei+1,j0tj,j0

b1,j b2,j b3,j

pi,j =
1
Z

fi,jei,jbi,jbelief (probability) that tag j is at position i:

Forward-backward is belief propagation (Smyth et al. 1997) 
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Belief Propagation
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span variables

Belief Propagation

Marcel proved  completeness  

We can also do the same for the distribution over parse trees!
(Case-factor diagrams: McAllester et al. 2008)

Inside-outside is belief propagation (Sato 2007)

0S3  
0NP3

0NP2 1S\NP3

0NP1 1S\NP/NP2 2NP3
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Loopy Belief Propagation
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1
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!

• Computes approximate marginals, no guarantees.!

• Complexity is additive:!

• Used to compute minimum-risk parse (Goodman 1996).

Loopy Belief Propagation

O(Gn3 +Gn)
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Dual Decomposition

u(i, t) = u(i, t) + ↵ · [y(i, t)� z(i, t)] (Rush et al. 2010)

arg max

y,z
f(y) + g(z) y(i, t) = z(i, t)s.t. for all i, t

L(u) = max

y
f(y) +

X

i,t

u(i, t) · y(i, t)

+ max

z
g(z)�

X

i,t

u(i, t) · z(i, t)

u(i, t)Dual objective: find assignment of               that minimises        L(u)

Solution provably solves original problem.
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Dual Decomposition
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parsing factor

supertagging factor Viterbi tags

Viterbi parse

“Message passing”  
(Komodakis et al. 2007)



• Computes exact maximum, if it converges.!

• Otherwise: return best parse seen (approximation).!

• Complexity is additive:!

• Use to compute Viterbi solutions.

Dual Decomposition

O(Gn3 +Gn)



Experiments

• Standard parsing task:!

• C&C Parser and supertagger (Clark & Curran 2007).!

• CCGBank standard train/dev/test splits.!

• Piecewise optimisation (Sutton and McCallum 2005)!

• Approximate algorithms used to decode test set.
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Experiments: Accuracy over time

tight search (AST)

loose search (Rev)
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Experiments: Convergence

Dual decomposition exact in 99.7% of cases  
What about belief propagation?
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Instantly, 91% match final DD solutions!

  Takes DD 15 iterations to reach same level.
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Oracle Results Again
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Summary so far

• Supertagging efficiency comes at the cost of accuracy.!

• Interaction between parser and supertagger can be 
exploited in an integrated model.!

• Practical inference for complex integrated model.!

• First empirical comparison between dual 
decomposition and belief propagation on NLP task.!

• Loopy belief propagation is fast, accurate and exact.
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Overview

• Analysis of state-of-the-art approach
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Training the Integrated Model

• So far optimised Conditional Log-Likelihood (CLL).!

• Optimise towards task-specific metric e.g. F1 such as in 
SMT (Och, 2003).!

• Past work used approximations to Precision  
(Taskar et al. 2004).!

• Contribution: Do it exactly and verify approximations.
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CCG: Labelled, directed dependency recovery  
(Clark & Hockenmaier, 2002)

<proved, (S\NP)/NP, completeness>
<proved, (S\NP)/NP, Marcel>



y = dependencies in ground truth
y’ = dependencies in proposed output

 correct dependencies returned
 all dependencies returned

|y \ y0| = n
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Parsing Metrics



y = dependencies in ground truth
y’ = dependencies in proposed output

Precision P (y, y0) =
|y \ y0|
|y0| =

n

d

 correct dependencies returned
 all dependencies returned

|y \ y0| = n

|y0| = d

Recall R(y, y0) =
|y \ y0|
|y| =

n

|y|

F-measure F1(y, y
0) =

2PR

P +R
=

2|y \ y0|
|y|+ |y0| =

2n

d+ |y|

Parsing Metrics



Softmax-Margin Training

• Discriminative.!

• Probabilistic.!

• Convex objective.!

• Minimises bound on expected risk for a given loss 
function.!

• Requires little change to existing CLL implementation.

(Sha & Saul, 2006; Povey & Woodland,2008; Gimpel & Smith, 2010)



Softmax-Margin Training

CLL: min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y)}

⌅

⌃ (2)

min
�

m�

i=1

⇤

⇧��Tf(x(i), y(i)) + log
�

y�Y(x(i))

exp{�Tf(x(i), y) + �(y(i), y)}

⌅

⌃ (3)

⌥

⌥⇥k
=

m�

i=1

�
�hk(x

(i), y(i))⇥k +
exp{�Tf(x(i), y(i))}⌥

y�Y(x(i)) exp{�Tf(x(i), y) + �(y(i), y)}
hk(x

(i), y(i))⇥k

⇥
(4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

Draft, do not circulate without permission.

Ai,i+1,n+(ai:A),d+(ai:A) ⇥= w(ai : A)

Ai,j,n+n�+n+(BC�A),d+d�+d+(BC�A) ⇥= Bi,k,n,d ⇤ Ck,j,n�,d� ⇤ w(BC ⌅ A)

GOAL ⇥= S0,N,n,d ⇤
�
1� 2n

d+ |y|

⇥

Figure 2: State-split inside algorithm for computing softmax-margin with F-measure.

counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.
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Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran
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Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)
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a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).
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counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.
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Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran
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CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)
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CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).
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counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.
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Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran
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whenever y+ < n+ to account for these occasional
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splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j
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Ai,i+1 ⇤= w(ai : A)
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split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
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tal dependencies introduced by a parsing action. We
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particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).
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counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.
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Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran
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Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.

DecF1 = DecP +DecR (10)
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a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger. In our
experiments we used two variants on this strategy.

Pruning the categories in advance has a specific
failure mode: sometimes it is not possible to pro-
duce a sentence-spanning derivation from the tag se-
quences preferred by the supertagger, since it does
not enforce grammaticality. A workaround for this
problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on
a step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
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gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).
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counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.
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Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran
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CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
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realises it, together with “and - apples”.
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pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
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to F-measure.
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pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside
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counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.
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Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)
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Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran
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tion only if a maximum chart size is exceeded. Our
beam settings for both strategies during testing are
in Table 1.

Adaptive supertagging aims for speed via pruning
while the reverse strategy aims for accuracy by ex-
posing the parser to a larger search space. Although
Clark and Curran (2007) found no actual improve-
ments from the latter strategy, we will show that with
some models it can have a substantial effect.
Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-

Figure 2: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates de-
pendencies arising from coordination once all conjuncts
are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
man (1999).
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counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.
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Figure 5: Example illustrating handling of conjunctions
in CCG: .

Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran
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Figure 3: Example of flexible dependency realisation in
CCG: Our parser (Clark and Curran, 2007) creates depen-
dencies arising from coordination once all conjuncts were
found. The first application of the coordination rule (�)
only notes the dependency “and - pears” (dotted line); the
second application in the larger span, “apples and pears”,
realises it, together with “and - apples”.

same span, violating the assumption used to com-
pute y+ (Figure 3). Exceptions like this can cause
mismatches between n+ and y+. We set y+ = n+

whenever y+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposed approximation
to F-measure.
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are found and treats “and” as the syntactic head of coor-
dinations. The coordination rule (�) does not yet estab-
lish the dependency “and - pears” (dotted line); it is the
backward application (<) in the larger span, “apples and
pears”, that establishes it, together with “and - pears”.
CCG also deals with unbounded dependencies which po-
tentially lead to more dependencies than words (Steed-
man, 2000); in this example a unification mechanism cre-
ates the dependencies “likes - apples” and “likes - pears”
in the forward application (>).

The key idea will be to treat F1 as a non-local fea-
ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.

Formally, our goal will be to compute expecta-
2This is essentially the same trick used in the oracle F-

measure algorithm of Huang (2008), and indeed our algorithm
is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)

GOAL ⇤= S0,N

Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.

4Here we use state-splitting to refer to splitting an item Ai,j

into many items Ai,j,n,d, one for each hn, di pair.
5The outside equations can be easily derived from the inside

algorithm, or mechanically using the reverse values of Good-
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counts, n+ and d+:

DecP = d+ � n+ (6)

Recall requires the number of gold standard de-
pendencies, y+, which should have been recovered
in a particular state; we compute it as follows: A
gold dependency is due to be recovered if its head
lies within the span of one of its children and the de-
pendent in the other. With this we can compute the
decomposed recall:

DecR = y+ � n+ (7)

However, there is one issue with our formulation
of y+ with CCG and its way of dealing with
dependencies that makes our formulation slightly
more approximate: The unification mechanism of
CCG allows to realise dependencies later in the
derivation when both the head and dependent are
in the same span (Figure 5). This makes using
the proposed decomposed recall difficult as our
gold-dependency count y+ may under or over-state
the number of correct dependencies n+. Given that
this loss function is an approximation, we deal with
this inconsistency via setting y+ = n+ whenever
y+ < n+ to account for gold-dependencies which
have not been correctly classified by our method.
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Finally, decomposed F-measure is simply the sum
of the two decomposed losses:

DecF1 = (d+ � n+) + (y+ � n+) (8)

5 Experiments

Parsing Strategies. The most successful approach
to CCG parsing is based on a pipeline strategy: First,
we tag (or multitag) each word of the sentence with
a lexical category using a supertagger, a sequence
model over these categories (Bangalore and Joshi,
1999; Clark, 2002). Second, we parse the sentence
under the requirement that the lexical categories are
fixed to those preferred by the supertagger.

Pruning the categories in advance this way has a
specific failure mode: sometimes it is not possible
to produce a sentence-spanning derivation from the
tag sequences preferred by the supertagger, since it
does not enforce grammaticality. A workaround for
this problem is the adaptive supertagging (AST) ap-
proach of Clark and Curran (2004). It is based on a
step function over supertagger beam widths, relax-
ing the pruning threshold for lexical categories only
if the parser fails to find an analysis. The process ei-
ther succeeds and returns a parse after some iteration
or gives up after a predefined number of iterations.
As Clark and Curran (2004) show, most sentences
can be parsed with a very small number of supertags
per word. However, the technique is inherently ap-
proximate: it will return a lower probability parse
under the parsing model if a higher probability parse
can only be constructed from a supertag sequence
returned by a subsequent iteration. In this way it pri-
oritizes speed over exactness, although the tradeoff
can be modified by adjusting the beam step func-
tion. Regardless, the effect of the approximation is
unbounded.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parseable when they otherwise would not be due to
an impractically large search space. Reverse AST
starts with a wide beam, narrowing it at each itera-
tion only if a maximum chart size is exceeded. The
used beam settings for both strategies during testing
are in Table 1.
Parser. We use the C&C parser (Clark and Cur-
ran, 2007) and its supertagger (Clark, 2002). Our
baseline is the hybrid model of Clark and Curran
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in the forward application (>).
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ture of the parse, dependent on values n and d.2 To
compute expectations we split each span in an other-
wise usual CKY program by all pairs �n, d incident
at that span. Since we anticipate the number of these
splits to be approximately linear in sentence length,
the algorithm’s complexity remains manageable.
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is a sum-product variant of that max-product algorithm.

tions over the sentence a1...aN . In order to abstract
away from the particulars of CCG and present the
algorithm in relatively familiar terms as a variant
of CKY, we will use the notation ai : A for lexi-
cal entries and BC ⇧ A to indicate that categories
B and C combine to form category A via forward
or backward composition or application.3 Item Ai,j

accumulates the inside score associated with cate-
gory A spanning i, j, computed with the usual in-
side algorithm, written here as a series of recursive
equations:

Ai,i+1 ⇤= w(ai : A)

Ai,j ⇤= Bi,k ⌅ Ck,j ⌅ w(BC ⇧ A)
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Our algorithm computes expectations on state-
split items Ai,j,n,d.4 Let functions n+(·) and d+(·)
respectively represent the number of correct and to-
tal dependencies introduced by a parsing action. We
can now present the state-split variant of the inside
algorithm in Fig. 3. The final recursion simply incor-
porates the loss function for all derivations having a
particular F-score; by running the full inside-outside
algorithm on this state-split program, we obtain the
desired expectations.5 A simple modification of the
weight on the goal transition enables us to optimise
precision, recall or a weighted F-measure.

3These correspond to unary rules A ! ai and binary rules
A ! BC in a context-free grammar in Chomsky normal form.
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Figure 3: State-split inside algorithm for computing softmax-margin with F-measure.

Note that while this algorithm computes exact
sentence-level expectations, it is approximate at the
corpus level, since F-measure does not decompose
over sentences. We give the extension to exact
corpus-level expectations in Appendix A.

3.2 Approximate Loss Functions
We will also consider approximate but more effi-
cient alternatives to our exact algorithms. The idea
is to use cost functions which only utilise statistics
available within the current local structure, similar to
those used by Taskar et al. (2004) for tracking con-
stituent errors in a context-free parser. We design
three simple losses to approximate precision, recall
and F-measure on CCG dependency structures.

Let T (y) be the set of parsing actions required
to build parse y. Our decomposable approximation
to precision simply counts the number of incorrect
dependencies using the local dependency counts,
n+(·) and d+(·).

DecP (y) =
⇤

t⇥T (y)

d+(t)� n+(t) (8)

To compute our approximation to recall we re-
quire the number of gold dependencies, c+(·), which
should have been introduced by a particular parsing
action. A gold dependency is due to be recovered
by a parsing action if its head lies within one child
span and its dependent within the other. This yields a
decomposed approximation to recall that counts the
number of missed dependencies.

DecR(y) =
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t⇥T (y)

c+(t)� n+(t) (9)

Unfortunately, the flexible handling of dependencies
in CCG complicates our formulation of c+, render-
ing it slightly more approximate: The unification
mechanism of CCG sometimes causes dependencies

to be realised later in the derivation, at a point when
both the head and the dependent are in the same
span, violating the assumption used to compute c+
(see again Figure 2). Exceptions like this can cause
mismatches between n+ and c+. We set c+ = n+

whenever c+ < n+ to account for these occasional
discrepancies.

Finally, we obtain a decomposable approximation
to F-measure.

DecF1(y) = DecP (y) +DecR(y) (10)

4 Experiments

Parsing Strategy. CCG parsers use a pipeline strat-
egy: we first multitag each word of the sentence with
a small subset of its possible lexical categories us-
ing a supertagger, a sequence model over these cat-
egories (Bangalore and Joshi, 1999; Clark, 2002).
Then we parse the sentence under the requirement
that the lexical categories are fixed to those preferred
by the supertagger. In our experiments we used two
variants on this strategy.

First is the adaptive supertagging (AST) approach
of Clark and Curran (2004). It is based on a step
function over supertagger beam widths, relaxing the
pruning threshold for lexical categories only if the
parser fails to find an analysis. The process either
succeeds and returns a parse after some iteration or
gives up after a predefined number of iterations. As
Clark and Curran (2004) show, most sentences can
be parsed with very tight beams.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parsable when they otherwise would not be due to an
impractically large search space. Reverse AST starts
with a wide beam, narrowing it at each iteration only
if a maximum chart size is exceeded. Table 1 shows
beam settings for both strategies.
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We will also consider approximate but more effi-
cient alternatives to our exact algorithms. The idea
is to use cost functions which only utilise statistics
available within the current local structure, similar to
those used by Taskar et al. (2004) for tracking con-
stituent errors in a context-free parser. We design
three simple losses to approximate precision, recall
and F-measure on CCG dependency structures.

Let T (y) be the set of parsing actions required
to build parse y. Our decomposable approximation
to precision simply counts the number of incorrect
dependencies using the local dependency counts,
n+(·) and d+(·).
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To compute our approximation to recall we re-
quire the number of gold dependencies, c+(·), which
should have been introduced by a particular parsing
action. A gold dependency is due to be recovered
by a parsing action if its head lies within one child
span and its dependent within the other. This yields a
decomposed approximation to recall that counts the
number of missed dependencies.
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Unfortunately, the flexible handling of dependencies
in CCG complicates our formulation of c+, render-
ing it slightly more approximate: The unification
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to F-measure.
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Parsing Strategy. CCG parsers use a pipeline strat-
egy: we first multitag each word of the sentence with
a small subset of its possible lexical categories us-
ing a supertagger, a sequence model over these cat-
egories (Bangalore and Joshi, 1999; Clark, 2002).
Then we parse the sentence under the requirement
that the lexical categories are fixed to those preferred
by the supertagger. In our experiments we used two
variants on this strategy.

First is the adaptive supertagging (AST) approach
of Clark and Curran (2004). It is based on a step
function over supertagger beam widths, relaxing the
pruning threshold for lexical categories only if the
parser fails to find an analysis. The process either
succeeds and returns a parse after some iteration or
gives up after a predefined number of iterations. As
Clark and Curran (2004) show, most sentences can
be parsed with very tight beams.

Reverse adaptive supertagging is a much less ag-
gressive method that seeks only to make sentences
parsable when they otherwise would not be due to an
impractically large search space. Reverse AST starts
with a wide beam, narrowing it at each iteration only
if a maximum chart size is exceeded. Table 1 shows
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Experiments

• Standard parsing task:!

• C&C Parser and supertagger (Clark & Curran 2007).!

• CCGBank standard train/dev/test splits.!

• Piecewise optimisation (Sutton and McCallum 2005)
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Does task-specific optimisation degrade accuracy on 
other metrics?
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Summary

• Softmax-Margin training is easy and improves our 
model.!

• Approximate loss functions are fast, accurate and easy 
to use.!

• Best ever CCG parsing results (87.7 → 89.3). 



Future Directions

• What can we do with the presented methods?!

• BP for other complex problems e.g. SMT!

• Semantics for SMT.!

• Simultaneous parsing of multiple sentences.



BP for other NLP pipelines

• Pipelines necessary for practical NLP systems!

• More accurate integrated models often too complex!

• This talk: Approximate inference can make these 
models practical!

• Use it for other pipelines e.g. POS, NER tagging & 
Parsing!

• Hard: BP for syntactic MT, another weighted 
intersection problem between LM & TM



Semantics for SMT
• Compositional & distributional meaning 

representation to compute vectors of sentence-
meaning (Greffenstette & Sadrzadeh, 2011; Clark, to appear) !

• Syntax (e.g. CCG) drives compositional process!

• Directions: Model optimisation, evaluation, LM

Translation

Reference



Parsing beyond sentence-level
• Many NLP tasks (e.g. IE) rely on uniform analysis of constituents!

• Skip-Chain CRFs successful to predict consistent NER tags across 
sentences (Sutton & McCallum, 2004)!

• Parse multiple sentences at once and enforce uniformity of parses

The  securities and exchange  commission issued ...

NNP/N

NP

... responded to the statement of the securities and exchange commission

NPconjNP

NP\NP

NP

1.

2.



Related Publications
• A Comparison of Loopy Belief Propagation and Dual 

Decomposition for Integrated CCG Supertagging and 
Parsing. with Adam Lopez. In Proc. of ACL, June 2011. !

• Efficient CCG Parsing: A* versus Adaptive Supertagging. 
with Adam Lopez. In Proc. of ACL, June 2011.!

• Training a Log-Linear Parser with Softmax-Margin. with 
Adam Lopez. In Proc. of EMNLP, July 2011.!

• A Systematic Comparison of Translation Model Search 
Spaces. with Adam Lopez, Hieu Hoang, Philipp Koehn. 
In Proc. of WMT, March 2009.
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