wav2vec: Selt-supervised learning of
speech representations
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Supervised Machine learning
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Training speech recognition models

| ike Dblack tea with milk

e Train on 1,000s of hours of data for good systems. V. =
e Many languages, dialects, domains etc. R
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Meanwhile in other fields
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Pre-training in NLP
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Pre-training in Computer Vision

~J
o0

~J
b9

ImageNet top-1 accuracy
~J
I

68

oo
-

~J
o)

~J
-

-------- -®
o= - -4
S kT T 1‘77_1) 78.5
7 / "
9§ LT SImCLR-x4
W
.75'3 XSimCLR-x2
L S
| xNIoCQ vD x(’ PCv2
=% S1MmCEER-x1
xCMC AMDIM
i . M,
24M 94M 375M 586M

number of parameters

Thanks to Priya Goyal for sharing the vision graph.



Unsupervised / Self-supervised Pre-training

e Learn good representations without labels
e NLP: Predict occluded parts of sentence

e \ision: make representations invariant to augmentations



Learning good representations of audio data
from unlabeled audio
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This talk

e Summary of past 2 years of our work on SSL for speech
e Speech systems with 10 minutes of labeled data

e Multilingual pre-training transfers across languages



wav2vec: Latent speech audio representations

L Lo La wav2vec

C / | e Fully convolutional
: e Binary cross entropy loss

e Representations used to improve ASR tasks
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vg-wav2vec: Learning discrete latent speech representations

e \ector quantize to discover discrete latent

C .
speech representations
z 1 1 i i
g e Learn contextualized representations on
Z | : | | - top of quantized speech
X

e Product quantization of discrete units

e Quantization via Gumbel and K-means

v(-wav2vec BERT AM t
h e VQ enables use of NLP-style models

e
' e Different to vg-vae: context in latent space
drediction vs. data reconstruction
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wav2vec 2.0

Contrastive loss

L e Joint VQ & context representation learning
Context C T
representations 1 1 1 3 1

— e Bi-directional contextualized representations
Masked .
Quantized o “ é@ “ %} “ }‘{ i “ e Contrastive task
tations (@ (@)
representatio / / / /
Latent speech # :
representations CNN e \ector quantlzed targets

raw waveform X

e Fine-tuned on labeled data




Objective

exp(sim(cs, qz)/K)

L., = —log ~
h - quQt exp(sim(ct,q)/K)

Codebook diversity penalty to encourage more codes to be used



Masking

e Sample starting points for masks without replacement, then expand to 10 time-steps
e Spans can overlap
e Fora 15ssample, ~49% of the time-steps masked with an average span length of ~300ms
Context C
representations f $ A $ f
Transformer
Latent speech = ! m m ! ﬂn
representations
Mask span start
CNN

Masked time-step

Unmasked time-step

raw waveform X




FIne-tuning

e Add asingle linear projection on top into target vocab and train with CTC loss with a
low learning rate (CNN encoder is not trained).

e Use modified SpecAugment in latent space to prevent early overfitting

e Uses wav2letter decoder with the official 4gram LM and Transformer LM



Results

Librispeech 960h setup + Neural LM
4.6

4.6

3.45
)
©
S

s 2.3
[
O
<

1.15

0

test other

ContextNet (supervised only)

B wav2vec (supervised only)

B Noisy Student (60k-h unlabeled)
wav2vec (60k-h unlabeled)



Results

Librispeech 960h setup + Neural LM

4.6

3.45
)
©
S

s 2.3
[
O
<

1.15

0

test other

ContextNet (supervised only)

B wav2vec (supervised only)

B Noisy Student (60k-h unlabeled)
wav2vec (60k-h unlabeled)



Results

4.6

3.45
)
©
S

5 2.3
[
o
<

1.15

0

Librispeech 960h setup + Neural LM

test other

ContextNet (supervised only)

B wav2vec (supervised only)

B Noisy Student (60k-h unlabeled)
wav2vec (60k-h unlabeled)

Word error rate

11

8.25

5.5

2.15

Low resource setup

test other

B Noisy Student 100h
wav2vec 100h
wav2vec 1h

B wav2vec 10m
B wav2vec 10m + (60k-h unlabeled)



Word error rate on test-other

Results
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Results

Effects of model size and amount of unlabeled data
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Results

Effects of model size and amount of unlabeled data
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Examples (10 min labeled data)

HYP (no LM): she SESED and LUCHMAN GAIVE A SENT won by her GENTAL argument
HYP (w/ LM): she ceased and LUCAN gave assent won by her gentle argument
REF: she ceased and lakshman gave assent won by her gentle argument

HYP (no LM): but NOT WITH STANDING this boris EMBRAED him in a QUIAT FRENDLY
way and CISED him THRE times

HYP (w/ LM): but NOT WITHSTANDING this boris embraced him in a quiet friendly way
and kissed him three times

REF: but notwithstanding this boris embraced him in a quiet friendly way and kissed him
three times




Pre-training and selt-training



Pre-training and self-training

e Self-training very successful in speech recognition: generate pseudo-labels

Supervised model
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Pre-training and self-training

e Self-training very successful in speech recognition: generate pseudo-labels

Supervised model
| like tea /
| What time is it?

St st o

Hello !




Pre-training and self-training

e Self-training very successful in speech recognition: generate pseudo-labels

Supervised model
| like tea /
| What time is it?
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Pre-training and self-training

e Self-training very successful in speech recognition: generate pseudo-labels
e Do both have the same effect?

e Recipe: pre-train on the unlabeled data, pseudo-label, fine-tune pre-trained model
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XLSR: cross lingual speech
representation learning with wav2vec



Why cross-lingual self-supervised learning

o Little labeled data -> little unlabeled data

e Leverage unlabeled data from high-resource languages

e To improve performance on low-resource languages

e One model for each of the 6500 languages, for each domain? No.

e Instead: one pertained model for all languages



Meanwhile in multilingual research

Cross-lingual understanding (XLU)
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XLSR: cross lingual speech representation learning with wav2vec

£ Contrastive loss
/ c Multilingual quantized latent speech representations
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XLSR: Results - cross-lingual transter

XLSR significantly outperforms previously published approaches on CommonVoice/BABEL

CommonVoice results:
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XLSR: Results - cross-lingual transter

XLSR significantly outperforms previously published approaches on CommonVoice/BABEL

Common Voice results: BABEL (average) results:
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XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance



XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance

CommonVoice results:

28

N
—

Monolingual Multilingual
finetuning finetuning

Phoneme Error Rate (PER)
T~

ﬂ%% ﬂ%%
% %0

%o

ﬂ%%
7,



XLSR: Results - impact of language similarity

Language similarity plays an important role in cross-lingual transter

Similar higher-resource language data helps the most for low-resource language

5h Italian
+ 1h labeled + 50h unlabeled in another language




XLSR: Results - impact of language similarity

Language similarity plays an important role in cross-lingual transter
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XLSR: Analysis of discrete latent speech representations

PCA visualization of latent discrete representations from the multilingual codebook

Similar languages tend to share discrete tokens and thus cluster together
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Conclusion

e For the first time, pre-training for speech works very well in both low-resource and
high-resource setup.

e Cross-lingual training improves low-resource languages.
e Pre-training and self-training are complementary.

e Using only 10 minutes (48 utterances) of transcribed data rivals best system trained
on 960h from 1 year ago.

e (Code and models are available in the fairseq GitHub repo + Hugging Face.
FAIRSEQ

-ﬁ o "N
2=l



Future directions

e What is learnt at different layers?
e Learning representations at different granularities.
e (Can we learn ASR systems without any supervision at all?

e (Can we generate speech with the learned representations?
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