wav2vec: Self-supervised learning of speech representations

Facebook Al Research

Alexei Baevski

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Anuroop Sriram

Naman Goyal

Wei-Ning Hsu

Michael Auli

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve

Supervised Machine learning

, cat

potential train/test mismatch

Need to annotate lots of data!

Training speech recognition models

l like black tea with milk

- Train on 1,000s of hours of data for good systems.
- Many languages, dialects, domains etc.

Meanwhile in other fields

Pre-training in NLP

Pre-training in Computer Vision

Unsupervised / Self-supervised Pre-training

- Learn good representations without labels
- NLP: Predict occluded parts of sentence
- Vision: make representations invariant to augmentations

Learning good representations of audio data from unlabeled audio

Speech recognition

Ich mag Tee 0.1 Speech translation 0.5 -0.9 wav2vec

Audio event detection

MADA

This talk

- Summary of past 2 years of our work on SSL for speech
- Speech systems with 10 minutes of labeled data
- Multilingual pre-training transfers across languages

wav2vec: Latent speech audio representations

wav2vec

- Fully convolutional
- Binary cross entropy loss
- Representations used to improve ASR tasks

vq-wav2vec: Learning discrete latent speech representations

- Vector quantize to discover discrete latent speech representations
- Learn contextualized representations on top of quantized speech
- Product quantization of discrete units
- Quantization via Gumbel and K-means
- VQ enables use of NLP-style models
- Different to vq-vae: context in latent space prediction vs. data reconstruction

wav2vec 2.0

- Joint VQ & context representation learning
- Bi-directional contextualized representations
- Contrastive task
- Vector quantized targets
- Fine-tuned on labeled data

Objective

Codebook diversity penalty to encourage more codes to be used

Masking

- Sample starting points for masks without replacement, then expand to 10 time-steps
- Spans can overlap
- For a 15s sample, ~49% of the time-steps masked with an average span length of ~300ms

Fine-tuning

- Add a single linear projection on top into target vocab and train with CTC loss with a low learning rate (CNN encoder is not trained).
- Use modified SpecAugment in latent space to prevent early overfitting
- Uses wav2letter decoder with the official 4gram LM and Transformer LM

Librispeech 960h setup + Neural LM

Librispeech 960h setup + Neural LM

Effects of model size and amount of unlabeled data

Effects of model size and amount of unlabeled data

Effects of model size and amount of unlabeled data

Examples (10 min labeled data)

HYP (no LM): she SESED and LUCHMAN GAIVE A SENT won by her GENTAL argument

HYP (w/LM): she ceased and LUCAN gave assent won by her gentle argument

REF: she ceased and lakshman gave assent won by her gentle argument

HYP (no LM): but NOT WITH STANDING this boris EMBRAED him in a QUIAT FRENDLY way and CISED him THRE times

HYP (w/LM): but NOT WITHSTANDING this boris embraced him in a quiet friendly way and kissed him three times

REF: but notwithstanding this boris embraced him in a quiet friendly way and kissed him three times

Self-training very successful in speech recognition: generate pseudo-labels

Supervised model

Self-training very successful in speech recognition: generate pseudo-labels

Self-training very successful in speech recognition: generate pseudo-labels

Self-training very successful in speech recognition: generate pseudo-labels

- Self-training very successful in speech recognition: generate pseudo-labels
- Do both have the same effect?
- Recipe: pre-train on the unlabeled data, pseudo-label, fine-tune pre-trained model

XLSR: cross lingual speech representation learning with wav2vec

Why cross-lingual self-supervised learning

- Little labeled data -> little unlabeled data
- Leverage unlabeled data from high-resource languages
- To improve performance on low-resource languages
- One model for each of the 6500 languages, for each domain? No.
- Instead: one pertained model for all languages

Meanwhile in multilingual research

Cross-lingual understanding (XLU)

Multilingual machine translation

XLSR: cross lingual speech representation learning with wav2vec

XLSR: Results - cross-lingual transfer

XLSR significantly outperforms previously published approaches on CommonVoice/BABEL

CommonVoice results:

XLSR: Results - cross-lingual transfer

XLSR significantly outperforms previously published approaches on CommonVoice/BABEL

CommonVoice results: 40 High-resource languages Phoneme Error Rate (PER) _ow-resource languages 30 20 10 trop to Basa, trop, to large, trop, Mono

XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance

XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance

CommonVoice results:

XLSR: Results - impact of language similarity

Language similarity plays an important role in cross-lingual transfer

Similar higher-resource language data helps the most for low-resource language

5h Italian + 1h labeled

+ 50h unlabeled in another language

XLSR: Results - impact of language similarity

Language similarity plays an important role in cross-lingual transfer

Similar higher-resource language data helps the most for low-resource language

XLSR: Analysis of discrete latent speech representations

PCA visualization of latent discrete representations from the multilingual codebook

Similar languages tend to share discrete tokens and thus cluster together


```
Tokpisin

Kăzakh

Lao

Cebuano

Kurmanji

Georgian

Turkish

Tagalog

Swahili

Zulu

Haitian

Pashto

Tamil
```

Conclusion

- For the first time, pre-training for speech works very well in both low-resource and high-resource setup.
- Cross-lingual training improves low-resource languages.
- Pre-training and self-training are complementary.
- Using only 10 minutes (48 utterances) of transcribed data rivals best system trained on 960h from 1 year ago.
- Code and models are available in the fairseq GitHub repo + Hugging Face.

Future directions

- What is learnt at different layers?
- Learning representations at different granularities.
- Can we learn ASR systems without any supervision at all?
- Can we generate speech with the learned representations?

Thankyou

Alexei Baevski

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Anuroop Sriram

Naman Goyal

Wei-Ning Hsu

Michael Auli

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve